Unit 6
 Fixed point Computer Arithmetic

Arithmetic instructions manipulate data to produce solution for computational problems. The 4 basic arithmetic operations are addition, subtraction, multiplication and division. From these 4 , it is possible to formulate other scientific problems by means of numerical analysis methods. Here, we'll discuss these 4 operations only on fixed-point binary data (there are other types too, viz. floating point binary data, binary-coded decimal data) and hence the unit named.

Addition and Subtraction

There are 3 ways of representing negative fixe-point binary numbers: signed magnitude, signed 1's complement or signed 2's complement. Singed 2's complemented form used most but occasionally we deal with signed magnitude representation.

Addition and Subtraction with signed-magnitude data

Everyday arithmetic calculations with paper and pencil for signed binary numbers are straight forward and are helpful on deriving hardware algorithm. When two signed numbers A and B are added are added are subtracted, we find 8 different conditions to consider as described in following table:

	Add	Subtract Magnitudes		
Operation		When $A>B$	When $A<B$	When $A=B$
$(+A)+(+B)$				
$(+A)+(-B)$		$+(A-B)$	$-(B-A)$	$+(A-B)$
$(-A)+(+B)$		$-(A-B)$	$+(B-A)$	$+(A-B)$
$(-A)+(-B)$	$-(A+B)$			$+(A-B)$
$(+A)-(+B)$		$-(B-A)$	$+(A-B)$	
$(+A)-(-B)$	$+(A+B)$			
$(-A)-(+B)$	$-(A+B)$	$-(A-B)$	$+(B-A)$	$+(A-B)$

Table: addition and subtraction of signed-magnitude numbers

Note: Brackets () for subtraction

Addition (subtraction) algorithm: when the signs of A and B are identical (different), add magnitudes and attach the sign of A to result. When the signs of A and b are different (identical), compare the magnitudes and subtract the smaller form larger.

Hardware Implementation

To implement the two arithmetic operations with hardware, we have to store numbers into two register A and B. let A_{s} and B_{s} be two flip-flops that holds corresponding signs. The result is transferred to A and $A_{s} . A$ and A_{s} together form a accumulator.

Block Diagram Description: hardware above consists of registers A and B and sign flip-flops A_{s} and B_{s}. subtraction is done by adding A to the 2's complement of B. Output carry is transferred to flip-flop E, where it can be checked to determine the relative magnitude of two numbers. Add-overflow flip-flop AVF holds overflow bit when A and B are added. Addition of A and B is done through the parallel adder. The S output of adder is applied to A again. The complementer provides an output of B or B^{\prime} depending on mode input M. Recalling unit 2 , when $M=0$, the output of B is transferred to the adder, the input carry is 0 and thus output of adder is $A+B$. when $M=1,1$'s complement of B is applied to the adder, input carry is 1 and output is $S=A+B^{\prime}+1$ (i.e. $A-B$).

Hardware Algorithm

The flowchart for the H/W algorithm is given below:

Fig: flowchart for add and subtract operations

Addition and Subtraction with signed 2's complement data

Guys, refer unit 1 once, addition and subtraction with signed 2's complement data are introduced there. Anyway, in signed 2's complement representation, the leftmost bit represents sign (0-positive and 1negative). If sign bit is 1 , entire number is represented in 2's complement form ($+33=00100001$ and $33=2$'s complement of $00100001=11011111$).
Addition: sign bits treated as other bits of the number. Carry out of the sign bit is discarded.
Subtraction: consists of first taking 2's complement of the subtrahend and then adding it to minuend. When two numbers of n-digits each are added and the sum occupies $n+1$ bits, overflow occurs which is detected by applying last two carries out of the addition to XOR gate. The overflow occurs when output of the gate is 1.

Fig: hardware for signed-2's complement addition and subtraction

\rightarrow Register configuration is same as signedmagnitude representation except sign bits are not separated. The leftmost bits in AC and BR represent sign bits.
\rightarrow Significant difference: sign bits are added are subtracted together with the other bits in complementer and parallel adder. The overflow flipflop V is set to 1 if there is an overflow. Output carry in this case is discarded.

Example: $33+(-35)$
$A C=33=00100001$
$B R=-35=2$'s complement of $35=11011101$
$A C+B R=11111110=-2 \quad$ which is the result
Comparing this algorithm with its signedmagnitude counterpart, it is much easier to add and subtract numbers. For this reason most computers adopt this representation over the more familiar signed-magnitude.

Fig: algorithm for addition \& subtraction of numbers in signed-2's complement representation

Multiplication

Signed-magnitude representation

For this representation, multiplication is done by a process of successive shift and adds operations. As an example:

Hardware implementation for signed-magnitude data

It needs same hardware as that of addition and subtraction of signed-magnitude. In addition it needs two more registers Q and SC .

Fig: Hardware for multiply operation

Hardware Algorithm

Flowchart below shows a hardware multiply algorithm.

Signed 2's complement representation

Booth multiplication Algorithm

Booth algorithm gives a procedure for multiplying binary integers in signed 2's complement notation.
Inspiration: String of $1^{\prime} s$ in the multiplier from bit weight 2^{k} to weight 2^{m} can be treated as $2^{k+1}-2^{m}$. As an example, binary number $001110(+14)$ has string of $1^{\prime} \mathrm{s}$ from 2^{3} to $2^{1}(k=3, m=1)$. So, this number can be represented as $2^{k+1}-2 m=2^{4}-2^{1}=16-2=14$ (case is similar for $-14(110010)=-2^{4}+2^{2}-2^{1}$). Thus, $M^{*} 14=$ $M{ }^{*} 2^{4}-M^{*} 2^{1}$; product can be obtained by shifting multiplicand M four times left and subtracted M shifted left once.
As in other multiplication schemes, Booth algorithm also requires examination of multiplier bits and shifting of the partial product. Prior to shifting multiplicand may be:
Subtracted <-- upon the encountering first least significant 1 in the string of 1 's in the multiplier.
Added <-- upon encountering first 0 (left of it must be 1) in string of 0's in the multiplier.
Unchanged <-- when multiplier bit $\left(Q_{n}\right)$ is identical to previous multiplier bit $\left(Q_{n+1}\right)$

Hardware for Booth algorithm

- Here, sign bits are not separated.
- Registers A, B and Q are renamed to $A C, B R$ and $Q R$.
- Extra flip-flop Q_{n+1} appended to $Q R$ is needed to store almost lost right shifted bit of the multiplier (which along with current Q_{n} gives information about bit sequencing of multiplier, in fact no. of 1's gathered together).
- Pair $\mathrm{Q}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}+1}$ inspect double bits of the multiplier.

Hardware Booth algorithm

Array Multiplier

Checking the bits of the multiplier one at a time and forming partial products is a sequential operation requiring sequence of add and shift microoperations. The multiplication of two binary numbers can be done with one microoperation by using combinational circuit that forms product bits all at once. This is a fast way of multiplying two numbers since all it takes is the time to propagate through the gates that form the multiplication array.
Consider multiplication of two 2-bit numbers: Multiplicand $=\mathbf{b}_{1} \mathbf{b}_{0}$, Multiplier $=\mathbf{a}_{1} \mathbf{a}_{0}$, Product $=\mathbf{c}_{3} \mathbf{c}_{2} \mathbf{c}_{1} \mathbf{c}_{0}$

- Since multiplication of two bits is identical to AND operation and hence can be implemented with AND gate.
- In the diagram, partial products and formed and added by means of HA (half adders).

Fig: 2-bit by 2-bit array multiplier

A combinational circuit binary multiplier with more bits can be constructed in similar fashion. For j multiplier bits and k multiplicand bits, we need $j^{*} k$ AND gates and ($j-1$) k-bit adders to produce a product of $\mathrm{j}+\mathrm{k}$ bits.

Fig: 4-bit by 3-bit array multiplier

Division Algorithms

Division of fixed-point binary numbers in signed-magnitude representation is done with successive compare, shift and subtract operations.

Example:

Divisor:	11010	Quotient $=Q$
$B=10001$	$\begin{aligned} & \hline 0111000000 \\ & 01110 \\ & 011100 \\ & -10001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dividend }=A \\ & 5 \text { bits of } A<B \text {, quotient has } 5 \text { bits } \\ & 6 \text { bits of } A \geqslant B \\ & \text { Shift right } B \text { and subtract; enter } 1 \text { in } Q \end{aligned}$
	$\begin{aligned} & -010110 \\ & -\underline{10001} \\ & \hline \end{aligned}$	7 bits of remainder $\geqslant B$ Shift right B and subtract; enter 1 in Q
	$\begin{aligned} & --001010 \\ & --010100 \\ & ---10001 \end{aligned}$	Remainder $<B$; enter 0 in Q; shift right B Remainder $\geqslant B$ Shift right B and subtract; enter 1 in Q
	$\begin{array}{r} ----000110 \\ ----00110 \end{array}$	$\begin{aligned} & \text { Remainder }<B \text {; enter } 0 \text { in } Q \\ & \text { Final remainder } \end{aligned}$

- Easier than decimal since quotient digits are 0 or 1.
- $\mathrm{B} \leftarrow$ divisor, $\mathrm{A} \leftarrow$ dividend, Q \leftarrow Quotient
- Process consists of comparing a partial remainder with a divisor.

Hardware Implementation for Signed-Magnitude Data

While implementing division in digital system, we adopt slightly different approach. Instead of shifting divisor right, the partial remainder (or dividend) is shifted left. Hardware is similar to multiplication algorithm (not booth). Register EAQ is now shifted left with 0 inserted into Q_{n} (Obviously, previous value of E is lost). (I am not redrawing the diagram guys, it's all same as multiplication but EAQ is shifted left so change the direction of arrows at bottom).

Divide Overflow

$>$ Division operation may result in a quotient with an overflow when working with finite size registers.
$>$ Storing divisor in n-bit resister and dividend in 2 n-bit registers, then if quotient occupies $n+1$ bits, we say divide-overflow has occurred (since $n+1$ bit quotient can not be stored in standard n-bit Qregister and/or memory word).
$>$ Talking about special case: size (dividend) $=2$ * size (divisor). Divide-overflow condition will occur if high-order half bits of the dividend >= divisor. This condition is detected by DVF (Divide-overflow Flip-flop).

Handling of overflow: its programmer's responsibility to detect DVF and take corrective measure. The best way is to use floating point data.

Hardware algorithm (Restoring algorithm)

Flowchart for hardware algorithm is shown below:

Other division algorithms

Method described above is restoring method in which partial remainder is restored by adding the divisor to the negative result. Other methods:

Comparison method: A and B are compared prior to subtraction. Then if $A>=B, B$ is subtracted form A. if $A<B$ nothing is done. The partial remainder is then shifted left and numbers are compared again. Comparison inspects end-carry out of the parallel adder before transferring to E .

Nonrestoring method: In contrast to restoring method, when A-B is negative, B is not added to restore A but instead, negative difference is shifted left and then B is added. How is it possible? Let's argue:

- In flowchart for restoring method, when $A<B$, we restore A by operation $A-B+B$. Next tine in a loop, this number is shifted left (multiplied by 2) and B subtracted again, which gives: $2(A-B+B)-B=$ 2A-B.
- In Nonrestoring method, we leave $A-B$ as it is. Next time around the loop, the number is shifted left and B is added: $2(A-B)+B=\mathbf{2 A}-B$ (same as above).

Exercises: textbook ch $10 \rightarrow 10.5,10.9,10.10,10.15$
10.5 solution

Boolean function for circuit: $V=T_{S}^{\prime} B_{S}^{\prime} A_{S}+T_{S} B_{S} A_{S}^{\prime}$
Transfer Augend sign into Ts. Then add: ACEACTBR As will have sign of sum. Truth Table for combing. circuit

T_{S}	B_{S}	A_{S}	V
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

10.9 and 10.10 solution: do it yourself
10.15 solution:

