
QN 1. Store 8-bit data in memory

Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 52H : Store 32H in the accumulator

STA 4000H : Copy accumulator contents at address 4000H

HLT : Terminate program execution

Program 2:

LXI H 4000H : Load HL with 4000H

MVI M, 32H : Store 32H in memory location pointed by HL register pair

(4000H)

HLT : Terminate program execution

Note: The result of both programs will be the same. In program 1 direct addressing instruction is used,

whereas in program 2 indirect addressing instructions is used.

QN 2. Exchange the contents of memory locations

Statement: Exchange the contents of memory locations 2000H and 4000H.

Program 1:

LDA 2000H : Get the contents of memory location 2000H into accumulator

MOV B, A : Save the contents into B register

LDA 4000H : Get the contents of memory location 4000Hinto accumulator

STA 2000H : Store the contents of accumulator at address 2000H

MOV A, B : Get the saved contents back into A register

STA 4000H : Store the contents of accumulator at address 4000H

cs
itn

ep
al

Source: www.csitnepal.com

Program 2:

LXI H 2000H : Initialize HL register pair as a pointer to memory location 2000H.

LXI D 4000H : Initialize DE register pair as a pointer to memory location 4000H.

MOV B, M : Get the contents of memory location 2000H into B register.

LDAX D : Get the contents of memory location 4000H into A register.

MOV M, A : Store the contents of A register into memory location 2000H.

MOV A, B : Copy the contents of B register into accumulator.

STAX D : Store the contents of A register into memory location 4000H.

HLT : Terminate program execution.

Note: In Program 1, direct addressing instructions are used, whereas in Program 2, indirect

addressing instructions are used.

QN 3. Add two 8-bit numbers

Statement: Add the contents of memory locations 4000H and 4001H and place the result in memory

location 4002H.

 Sample problem

 (4000H) = 14H

 (4001H) = 89H

 Result = 14H + 89H = 9DH

cs
itn

ep
al

Source: www.csitnepal.com

Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

Flowchart

Note: In Program 1, direct addressing instructions are used, whereas in Program 2, indirect

addressing instructions are used.

QN 1. Add two 16-bit numbers

Statement: Add the 16-bit number in memory locations 4000H and 4001H to the 16-bit number in

memory locations 4002H and 4003H. The most significant eight bits of the two numbers to be added

are in memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H

with the most significant byte in memory location 4005H.

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=3%20-%20Flow%20chart%20for%20Add%20two%208-bit%20numbers_2.gif

Program - 5.a: Add two 16-bit numbers - Source Program 1

Sample problem:

(4000H) = 15H

(4001H) = 1CH

(4002H) = B7H

(4003H) = 5AH

Result = 1C15 + 5AB7H = 76CCH

(4004H) = CCH

(4005H) = 76H

Source Program 1:

LHLD 4000H : Get first I6-bit number in HL

XCHG : Save first I6-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

MOV A, E : Get lower byte of the first number

ADD L : Add lower byte of the second number

MOV L, A : Store result in L register

MOV A, D : Get higher byte of the first number

ADC H : Add higher byte of the second number with CARRY

MOV H, A : Store result in H register

SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.

HLT : Terminate program execution

cs
itn

ep
al

Source: www.csitnepal.com

Flowchart

Program - 5b: Add two 16-bit numbers - Source Program 2

Source program 2:

LHLD 4000H : Get first I6-bit number

XCHG : Save first I6-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

DAD D : Add DE and HL

SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.

HLT : Terminate program execution

NOTE: In program 1, eight bit addition instructions are used (ADD and ADC) and addition is

performed in two steps. First lower byte addition using ADD instruction and then higher byte addition

using ADC instruction.In program 2, 16-bit addition instruction (DAD) is used.

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=5%20-%20Add%20two%2016%20bit%20numbers%20flowchart.gif
http://www.8085projects.info/image.axd?picture=5%20-%20Add%20two%2016%20bit%20numbers%20flowchart.gif

QN 1. Subtract two 8-bit numbers

Statement: Subtract the contents of memory location 4001H from the memory location 2000H and

place the result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H) = 51H

(4001H) = 19H

Result = 51H - 19H = 38H

Source program:

LXI H, 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

Flowchart

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. Add contents of two memory locations

Statement: Add the contents of memory locations 40001H and 4001H and place the result in the

memory locations 4002Hand 4003H.

Sample problem:

(4000H) = 7FH

(400lH) = 89H

 Result = 7FH + 89H = lO8H

(4002H) = 08H

(4003H) = 0lH

Source program:

LXI H, 4000H :HL Points 4000H

MOV A, M :Get first operand

INX H :HL Points 4001H

ADD M :Add second operand

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=4-Subtract%20two%208%20bit%20numbers.gif
http://www.8085projects.info/image.axd?picture=4-Subtract%20two%208%20bit%20numbers.gif

INX H :HL Points 4002H

MOV M, A :Store the lower byte of result at 4002H

MVIA, 00 :Initialize higher byte result with 00H

ADC A :Add carry in the high byte result

INX H :HL Points 4003H

MOV M, A :Store the higher byte of result at 4003H

HLT :Terminate program execution

Flowchart

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=6%20-Add%20contents%20of%20two%20memory%20locations.gif

QN 1. Subtract two 16-bit numbers

Statement: Subtract the 16-bit number in memory locations 4002H and 4003H from the 16-bit

number in memory locations 4000H and 4001H. The most significant eight bits of the two numbers

are in memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H

with the most significant byte in memory location 4005H.

Sample problem:

(4000H) = 19H

(400IH) = 6AH

(4004H) = I5H (4003H) = 5CH

Result = 6A19H - 5C15H = OE04H

(4004H) = 04H

(4005H) = OEH

Source program:

LHLD 4000H : Get first 16-bit number in HL

XCHG : Save first 16-bit number in DE

LHLD 4002H : Get second 16-bit number in HL

MOV A, E : Get lower byte of the first number

SUB L : Subtract lower byte of the second number

MOV L, A : Store the result in L register

MOV A, D : Get higher byte of the first number

SBB H : Subtract higher byte of second number with borrow

MOV H, A : Store l6-bit result in memory locations 4004H and 4005H.

SHLD 4004H : Store l6-bit result in memory locations 4004H and 4005H.

HLT : Terminate program execution.

cs
itn

ep
al

Source: www.csitnepal.com

Flowchart

QN 1. Finding one's complement of a number

Statement: Find the l's complement of the number stored at memory location 4400H and store the

complemented number at memory location 4300H.

Sample problem:

(4400H) = 55H

Result = (4300B) = AAB

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=7%20-%20Subtract%20two%2016-bit%20numbers_1.png

Source program:

LDA 4400B : Get the number

CMA : Complement number

STA 4300H : Store the result

HLT : Terminate program execution

Flowchart

QN 1. Finding Two's complement of a number

Statement: Find the 2's complement of the number stored at memory location 4200H and store the

complemented number at memory location 4300H.

Sample problem:

(4200H) = 55H

Result = (4300H) = AAH + 1 = ABH

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=8%20-%20Finding%20one%27s%20complement%20of%20a%20number_1.gif

Source program:

LDA 4200H : Get the number

CMA : Complement the number

ADI, 01 H : Add one in the number

STA 4300H : Store the result

HLT : Terminate program execution

Flowchart

QN 1. Pack the unpacked BCD numbers

Statement: Pack the two unpacked BCD numbers stored in memory locations 4200H and 4201H and

store result in memory location 4300H. Assume the least significant digit is stored at 4200H.

Sample problem:

(4200H) = 04

(4201H) = 09

Result = (4300H) = 94

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=9%20-%20Finding%20Two%27s%20complement%20of%20a%20number_2.gif

Source program:

 LDA 4201H : Get the Most significant BCD digit

 RLC

 RLC

 RLC

 RLC : Adjust the position of the second digit (09 is changed to 90)

 ANI FOH : Make least significant BCD digit zero

 MOV C, A : store the partial result

 LDA 4200H : Get the lower BCD digit

 ADD C : Add lower BCD digit

 STA 4300H : Store the result

 HLT : Terminate program execution

Flowchart

QN 1. Unpack a BCD number

Statement: Two digit BCD number is stored in memory location 4200H. Unpack the BCD number

and store the two digits in memory locations 4300H and 4301H such that memory location 4300H

will have lower BCD digit.

Sample problem:

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=10-Pack%20the%20unpacked%20BCD%20numbers.gif

(4200H) = 58

Result = (4300H) = 08 and

 (4301H) = 05

Source program:

LDA 4200H : Get the packed BCD number

ANI FOH : Mask lower nibble

RRC

RRC

RRC

RRC : Adjust higher BCD digit as a lower digit

STA 4301H : Store the partial result

LDA 4200H : .Get the original BCD number

ANI OFH : Mask higher nibble

STA 4201H : Store the result

HLT : Terminate program execution

Flowchart

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. Execution format of instructions

Statement: Read the program given below and state the contents of all registers after the execution of

each instruction in sequence.

Main program:

4000H LXI SP, 27FFH

4003H LXI H, 2000H

4006H LXI B, 1020H

4009H CALL SUB

400CH HLT

Subroutine program:

4100H SUB: PUSH B

4101H PUSH H

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=11.Unpack%20a%20BCD%20number.gif

4102H LXI B, 4080H

4105H LXI H, 4090H

4108H SHLD 2200H

4109H DAD B

410CH POP H

410DH POP B

410EH RET

Note:

The table given gives the instruction sequence and the contents of all register and stack

after execution of each instruction.

TABLE

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=12%20-%20Execution%20format%20of%20instructions_2.gif

QN 1. Right shift, bit of data(8 bit and 16 bit)

Statement: Write a program to shift an eight bit data four bits

right. Assume data is in register C.

Sample problem:

(4200H) = 58

Result = (4300H) = 08 and

 (4301H) = 05

Source program 1:

 MOV A, C

 RAR

 RAR

 RAR

 RAR

 MOV C, A

 HLT

Flowchart for Source

program1

Statement: Write a program to shift a 16 bit data, 1 bit right. Assume that

data is in BC register pair.

Source program 2

 MOV A, B

 RAR

 MOV B, A

 MOV A, C

 RAR

 MOV C, A

 HLT

Flowchart for Source

program1

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=13.a%20-%20-%20Right%20shift%20bit%20of%20data_3.gif

QN 1. Left Shifting of a 16-bit data

Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL register

Source Program

Alter the contents of flag register in 8085

Statement: Write a set of instructions to alter the contents of flag register in 8085.

 PUSH PSW: Save flags on stack

 POP H: Retrieve flags in 'L'

 MOV A, L :Flags in accumulator

 CMA:Complement accumulator

 MOV L, A:Accumulator in 'L'

 PUSH H:Save on stack

 POP PSW:Back to flag register

 HLT:Terminate program execution

QN 1. Calculate the sum of series of numbers

Statement: Calculate the sum of series of numbers. The length of the series is in memory location

4200H and the series begins from memory location 4201H.

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=13.b%20-%20-%20Right%20shift%20bit%20of%20data_4.gif
http://www.8085projects.info/image.axd?picture=14%20-%20Left%20Shifting%20of%20a%2016-bit%20data.gif

a. Consider the sum to be 8 bit number. So, ignore carries. Store the sum at memory location 4300H.

b. Consider the sum to be 16 bit number. Store the sum at memory locations 4300H and 4301H.

Sample problem 1:

4200H = 04H

4201H = 10H

4202H = 45H

4203H = 33H

4204H = 22H

Result = 10 +41 + 30 + 12 = H

4300H = H

Source program 1:

LDA 4200H

MOV C, A : Initialize

counter

SUB A : sum = 0

LXI H, 420lH : Initialize

pointer

BACK: ADD M : SUM =

SUM + data

INX H : increment pointer

DCR C : Decrement counter

JNZ BACK : if counter 0

repeat

STA 4300H : Store sum

HLT : Terminate program

execution

Flowchart for Source program1

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=16-Calculate%20the%20sum%20of%20series%20of%20numbers.gif

Sample problem 2:

4200H = 04H

420lH = 9AH

4202H = 52H

4203H = 89H

4204H = 3EH

Result = 9AH + 52H + 89H + 3EH = H

4300H = B3H Lower byte

4301H = 0lH Higher byte

Source program 2

LDA 4200H

MOV C, A : Initialize counter

LXI H, 4201H : Initialize pointer

SUB A :Sum low = 0

MOV B, A : Sum high = 0

BACK: ADD M : Sum = sum + data

JNC SKIP

INR B : Add carry to MSB of SUM

SKIP: INX H : Increment pointer

DCR C : Decrement counter

JNZ BACK : Check if counter 0 repeat

STA 4300H : Store lower byte

MOV A, B

STA 4301H : Store higher byte

HLT :Terminate program execution

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. Multiply two 8-bit numbers

Statement: Multiply two 8-bit numbers stored in memory locations 2200H and 2201H by repetitive

addition and store the result in memory locations 2300H and 2301H.

Sample problem 1:

(2200H) = 03H

(2201H) = B2H

Result = B2H + B2H + B2H = 216H

 = 216H

(2300H) = 16H

(2301H) = 02H

Source program :

 LDA 2200H

 MOV E, A

 MVI D, 00 : Get the first

number in DE register pair

 LDA 2201H

 MOV C, A : Initialize counter

 LX I H, 0000 H : Result = 0

 BACK: DAD D : Result =

result + first number

 DCR C : Decrement count

 JNZ BACK : If count 0

repeat

 SHLD 2300H : Store result

 HLT : Terminate program

execution

Flowchart for program

QN 1. Divide a 16 bit number by a 8-bit number

Statement: Divide 16 bit number stored in memory locations 2200H and 2201H by the 8 bit number

stored at memory location 2202H. Store the quotient in memory locations 2300H and 2301H and

remainder in memory locations 2302H and 2303H.

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=17-Multiply%20two%208-bit%20numbers_1.gif

Sample problem 1:

(2200H) = 60H

(2201H) = A0H

(2202H) = l2H

Result = A060H/12H = 8E8H Quotient and 10H remainder

(2300H) = E8H

(2301H) = 08H

(2302H= 10H

(2303H) 00H

Source program :

 LHLD 2200H : Get the dividend

 LDA 2202H : Get the divisor

 MOV C, A

 LXI D, 0000H : Quotient = 0

 BACK: MOV A, L

 SUB C : Subtract divisor

 MOV L, A : Save partial result

 JNC SKIP : if CY 1 jump

 DCR H : Subtract borrow of

previous subtraction

 SKIP: INX D : Increment

quotient

 MOV A, H

 CPI, 00 : Check if dividend <

divisor

 JNZ BACK : if no repeat

 MOV A, L

 CMP C

 JNC BACK

 SHLD 2302H : Store the

remainder

 XCHG

 SHLD 2300H : Store the quotient

 HLT : Terminate program

execution

Flowchart for program

QN 1. Find the negative numbers in a block of data.

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=18-Divide%20a%2016%20bit%20number%20by%20a%208-bit%20number.gif

Statement: Find the number of negative elements (most significant bit 1) in a block of data. The

length of the block is in memory location 2200H and the block itself begins in memory location

2201H. Store the number of negative elements in memory location 2300H

Sample problem 1:

(2200H) = 04H

(2201H) = 56H

(2202H) = A9H

(2203H) = 73H

(2204H) = 82H

Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.

Source program :

 LDA 2200H

 MOV C, A : Initialize count

 MVI B, 00 : Negative number

= 0

 LXI H, 2201H : Initialize

pointer

 BACK: MOV A, M : Get the

number

 ANI 80H : Check for MSB

 JZ SKIP : If MSB = 1

 INR B : Increment negative

number count

 SKIP: INX H : Increment

pointer

 DCR C : Decrement count

 JNZ BACK : If count 0 repeat

 MOV A, B

 STA 2300H : Store the result

 HLT : Terminate program

execution

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=19-Find%20the%20negative%20numbers%20in%20a%20block%20of%20data.gif

QN 1. Find the largest of given numbers

Statement: Find the largest number in a block of data. The length of the block is in memory location

2200H and the block itself starts from memory location 2201H.

Store the maximum number in memory location 2300H. Assume that the numbers in the block are

all 8 bit unsigned binary numbers.

Sample problem 1:

(2200H) = 04

(2201H) = 34H

(2202H) = A9H

(2203H) = 78H

(2204H) =56H

Result = (2202H) = A9H

Source program :

 LDA 2200H

 MOV C, A : Initialize counter

 XRA A : Maximum =

Minimum possible value = 0

 LXI H, 2201H : Initialize

pointer

 BACK: CMP M : Is number>

maximum

 JNC SKIP : Yes, replace

maximum

 MOV A, M

 SKIP: INX H

 DCR C

 JNZ BACK

 STA 2300H : Store maximum

number

 HLT : Terminate program

execution

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. Count number of one's in a number

Statement: Write a program to count number of l's in the contents of D register and store the count in

the B register.

Sample problem 1:

(2200H) = 04

(2201H) = 34H

(2202H) = A9H

(2203H) = 78H

(2204H) =56H

Result = (2202H) = A9H

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=20-Find%20the%20largest%20of%20given%20numbers_1.gif

Source program :

 MVI B, 00H

 MVI C, 08H

 MOV A, D

 BACK: RAR

 JNC SKIP

 INR B

 SKIP: DCR C

 JNZ BACK

 HLT

Flowchart for program

QN 1. Arrange in ascending order

Statement: Write a program to sort given 10 numbers from memory location 2200H in the ascending

order.

Source program :

 MVI B, 09 : Initialize counter

 START : LXI H, 2200H: Initialize

memory pointer

 MVI C, 09H : Initialize counter 2

 BACK: MOV A, M : Get the number

 INX H : Increment memory pointer

 CMP M : Compare number with next

number

 JC SKIP : If less, don't interchange

 JZ SKIP : If equal, don't interchange

 MOV D, M

 MOV M, A

 DCX H

 MOV M, D

 INX H : Interchange two numbers

 SKIP:DCR C : Decrement counter 2

 JNZ BACK : If not zero, repeat

 DCR B : Decrement counter 1

 JNZ START

 HLT : Terminate program execution

Flowchart for program

QN 1. Calculate the sum of series of even numbers

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=21-Count%20number%20of%20one%27s%20in%20a%20number.gif
http://www.8085projects.info/image.axd?picture=22-Arrange%20in%20ascending%20order_2.gif

Statement: Calculate the sum of series of even numbers from the list of numbers. The length of the

list is in memory location 2200H and the series itself begins from memory location 2201H. Assume

the sum to be 8 bit number so you can ignore carries and store the sum at memory location 2210H.

Sample problem 1:

2200H= 4H

2201H= 20H

2202H= l5H

2203H= l3H

2204H= 22H

Result 22l0H= 20 + 22 = 42H

= 42H

Source program :

 LDA 2200H

 MOV C, A : Initialize

counter

 MVI B, 00H : sum = 0

 LXI H, 2201H : Initialize

pointer

 BACK: MOV A, M : Get the

number

 ANI 0lH : Mask Bit l to Bit7

 JNZ SKIP : Don't add if

number is ODD

 MOV A, B : Get the sum

 ADD M : SUM = SUM +

data

 MOV B, A : Store result in B

register

 SKIP: INX H : increment

pointer

 DCR C : Decrement counter

 JNZ BACK : if counter 0

repeat

 STA 2210H : store sum

 HLT : Terminate program

execution

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=23-Calculate%20the%20sum%20of%20series%20of%20even%20numbers.gif

QN 1. Calculate the sum of series of odd numbers

Statement: Calculate the sum of series of odd numbers from the list of numbers. The length of the list

is in memory location 2200H and the series itself begins from memory location 2201H. Assume the

sum to be 16-bit. Store the sum at memory locations 2300H and 2301H.

Sample problem 1:

2200H = 4H

2201H= 9AH

2202H= 52H

2203H= 89H

2204H= 3FH

Result = 89H + 3FH = C8H

2300H= H Lower byte

2301H = H Higher byte

Source program :

 LDA 2200H

 MOV C, A : Initialize

counter

 LXI H, 2201H : Initialize

pointer

 MVI E, 00 : Sum low = 0

 MOV D, E : Sum high = 0

 BACK: MOV A, M : Get the

number

 ANI 0lH : Mask Bit 1 to Bit7

 JZ SKIP : Don't add if

number is even

 MOV A, E : Get the lower

byte of sum

 ADD M : Sum = sum + data

 MOV E, A : Store result in E

register

 JNC SKIP

 INR D : Add carry to MSB

of SUM

 SKIP: INX H : Increment

pointer

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. Find the square of given number

Statement: Find the square of the given numbers from memory location 6100H and store the result

from memory location 7000H.

Sample problem 1:

2200H = 4H

2201H= 9AH

2202H= 52H

2203H= 89H

2204H= 3FH

Result = 89H + 3FH = C8H

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=24-Calculate%20the%20sum%20of%20series%20of%20odd%20numbers.gif

2300H= H Lower byte

2301H = H Higher byte

Source program :

 LXI H, 6200H : Initialize lookup

table pointer

 LXI D, 6100H : Initialize source

memory pointer

 LXI B, 7000H : Initialize destination

memory pointer

 BACK: LDAX D : Get the number

 MOV L, A : A point to the square

 MOV A, M : Get the square

 STAX B : Store the result at

destination memory location

 INX D : Increment source memory

pointer

 INX B : Increment destination

memory pointer

 MOV A, C

 CPI 05H : Check for last number

 JNZ BACK : If not repeat

 HLT : Terminate program execution

Flowchart for program

QN 1. Add two decimal numbers of 6 digit each

Statement: Two decimal numbers six digits each, are stored in BCD package form. Each number

occupies a sequence of byte in the memory. The starting address of first number is 6000H Write an

assembly language program that adds these two numbers and stores the sum in the same format

starting from memory location 6200H.

Source program :

 LXI H, 6000H : Initialize pointer l to first

number

 LXI D, 6l00H : Initialize pointer2 to second

number

 LXI B, 6200H : Initialize pointer3 to result

 STC

 CMC : Carry = 0

 BACK: LDAX D : Get the digit

 ADD M : Add two digits

 DAA : Adjust for decimal

 STAX.B : Store the result

 INX H : Increment pointer 1

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=25-Find%20the%20square%20of%20given%20number_2.gif

 INX D : Increment pointer2

 INX B : Increment result pointer

 MOV A, L

 CPI 06H : Check for last digit

 JNZ BACK : If not last digit repeat

 HLT : Terminate program execution

QN 1. Add each element of array with the elements of another array

Statement: Two decimal numbers six digits each, are stored in BCD package form. Each number

occupies a sequence of byte in the memory. The starting address of first number is 6000H Write an

assembly language program that adds these two numbers and stores the sum in the same format

starting from memory location 6200H.

Source program :

 LXI H, 6000H : Initialize pointer l to first

number

 LXI D, 6l00H : Initialize pointer2 to

second number

 LXI B, 6200H : Initialize pointer3 to

result

 STC

 CMC : Carry = 0

 BACK: LDAX D : Get the digit

 ADD M : Add two digits

 DAA : Adjust for decimal

 STAX.B : Store the result

 INX H : Increment pointer 1

 INX D : Increment pointer2

 INX B : Increment result pointer

 MOV A, L

 CPI 06H : Check for last digit

 JNZ BACK : If not last digit repeat

 HLT : Terminate program execution

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=27-Add%20two%20decimal%20numbers%20of%206%20digit%20each.gif
http://www.8085projects.info/image.axd?picture=28-Add%20each%20element%20of%20array%20with%20the%20elements%20of%20another%20array.gif

QN 1. Separate even numbers from given numbers

Statement: Write an assembly language program to separate even numbers from the given list of 50

numbers and store them in the another list starting from 2300H. Assume starting address of 50

number list is 2200H.

Source program :

 LXI H, 2200H : Initialize memory pointer l

 LXI D, 2300H : Initialize memory pointer2

 MVI C, 32H : Initialize counter

 BACK:MOV A, M : Get the number

 ANI 0lH : Check for even number

 JNZ SKIP : If ODD, don't store

 MOV A, M : Get the number

 STAX D : Store the number in result list

 INX D : Increment pointer 2

 SKIP: INX H : Increment pointer l

 DCR C : Decrement counter

 JNZ BACK : If not zero, repeat

 HLT : Stop

Flowchart for program

QN 1. Transfer contents to overlapping memory blocks

Statement: Write assembly language program with proper comments for the following:

A block of data consisting of 256 bytes is stored in memory starting at 3000H. This block is to be

shifted (relocated) in memory from 3050H onwards. Do not shift the block or part of the block

anywhere else in the memory.

Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore

it is necessary to transfer last byte first and first byte last.

Source Program:

 MVI C, FFH : Initialize counter

 LX I H, 30FFH : Initialize source memory pointer 3l4FH

 LXI D, 314FH : Initialize destination memory pointer

 BACK: MOV A, M : Get byte from source memory block

 STAX D : Store byte in the destination memory block

 DCX H : Decrement source memory pointer

 DCX : Decrement destination memory pointer

 DCR C : Decrement counter

 JNZ BACK : If counter 0 repeat

 HLT : Stop execution

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=29-Separate%20even%20numbers%20from%20given%20numbers.gif

QN 1. Add parity bit to 7-bit ASCII characters

Statement: Add even parity to a string of 7-bit ASCII characters. The length of the string is in

memory location 2040H and the string itself begins in memory location 2041H. Place even parity in

the most significant bit of each character.

Source program :

 LXI H, 2040H

 MOV C ,M : Counter for character

 REPEAT:INX H : Memory pointer to

character

 MOV A,M : Character in accumulator

 ORA A : ORing with itself to check parity.

 JPO PAREVEN : If odd parity place

 ORI 80H even parity in D7 (80).

 PAREVEN:MOV M , A : Store converted

even parity character.

 DCR C : Decrement counter.

 JNZ REPEAT : If not zero go for next

character.

 HLT : Terminate program execution

Flowchart for program

QN 1. Find the number of negative, zero and positive numbers

Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find number of negative,

zero and positive numbers from this list and store these results in memory locations 7000H, 7001H,

and 7002H respectively.

Source program :

 LXI H, 6000H : Initialize memory

pointer

 MVI C, 00H : Initialize number counter

 MVI B, 00H : Initialize negative number

counter

 MVI E, 00H : Initialize zero number

counter

 BEGIN:MOV A, M : Get the number

 CPI 00H : If number = 0

 JZ ZERONUM : Goto zeronum

 ANI 80H : If MSB of number = 1i.e. if

 JNZ NEGNUM number is negative goto

NEGNUM

 INR D : otherwise increment positive

number counter

 JMP LAST

 ZERONUM:INR E : Increment zero

number counter

 JMP LAST

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=31-Add%20parity%20bit%20to%207-bit%20ASCII%20characters.gif
http://www.8085projects.info/image.axd?picture=31-Add%20parity%20bit%20to%207-bit%20ASCII%20characters.gif

 NEGNUM:INR B : Increment negative

number counter

 LAST:INX H : Increment memory

pointer

 INR C : Increment number counter

 MOV A, C

 CPI 32H : If number counter = 5010

then

 JNZ BEGIN : Store otherwise check next

number

 LXI H, 7000 : Initialize memory pointer.

 MOV M, B : Store negative number.

 INX H

 MOV M, E : Store zero number.

 INX H

 MOV M, D : Store positive number.

 HLT : Terminate execution

QN 1. Multiply two eight bit numbers with shift and add method

Statement: Multiply the 8-bit unsigned number in memory location 2200H by the 8-bit unsigned

number in memory location 2201H. Store the 8 least significant bits of the result in memory location

2300H and the 8 most significant bits in memory location 2301H.

Sample problem:

(2200) = 1100 (0CH)

(2201) = 0101 (05H)

Multiplicand = 1100 (1210)

Multiplier = 0101 (510)

Result = 12 x 5 = (6010)

Source program :

 LXI H, 2200 : Initialize the memory

pointer

 MOV E, M : Get multiplicand

 MVI D, 00H : Extend to 16-bits

 INX H : Increment memory pointer

 MOV A, M : Get multiplier

 LXI H, 0000 : Product = 0

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=32-Find%20the%20number%20of%20negative,%20zero%20and%20positive%20numbers.gif

 MVI B, 08H : Initialize counter with

count 8

 MULT: DAD H : Product = product x

2

 RAL

 JNC SKIP : Is carry from multiplier 1

?

 DAD D : Yes, Product =Product +

Multiplicand

 SKIP: DCR B : Is counter = zero

 JNZ MULT : no, repeat

 SHLD 2300H : Store the result

 HLT : End of program

QN 1. Divide 16-bit number with 8-bit number using shifting technique

Statement: Divide the 16-bit unsigned number in memory locations 2200H and 2201H (most

significant bits in 2201H) by the B-bit unsigned number in memory location 2300H store the quotient

in memory location 2400H and remainder in 2401H.

Assumption: The most significant bits of both the divisor and dividend

are zero.

Source program :

 MVI E, 00 : Quotient = 0

 LHLD 2200H : Get dividend

 LDA 2300 : Get divisor

 MOV B, A : Store divisor

 MVI C, 08 : Count = 8

 NEXT: DAD H : Dividend =

Dividend x 2

 MOV A, E

 RLC

 MOV E, A : Quotient = Quotient x 2

 MOV A, H

 SUB B : Is most significant byte of

Dividend > divisor

 JC SKIP : No, go to Next step

 MOV H, A : Yes, subtract divisor

 INR E : and Quotient = Quotient + 1

 SKIP:DCR C : Count = Count - 1

 JNZ NEXT : Is count =0 repeat

 MOV A, E

 STA 2401H : Store Quotient

 Mov A, H

 STA 2410H : Store remainder

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=35-Multiply%20two%20eight%20bit%20numbers%20with%20shift%20and%20add%20method.gif
http://www.8085projects.info/image.axd?picture=35-Multiply%20two%20eight%20bit%20numbers%20with%20shift%20and%20add%20method.gif
http://www.8085projects.info/image.axd?picture=37-Divide%2016-bit%20number%20with%208-bit%20number%20using%20shifting%20technique_1.gif

 HLT : End of program.

QN 1. Sub routine to perform the task of DAA

Statement: Assume the DAA instruction is not present. Write a sub routine which will perform the

same task as DAA.

Sample Problem:

Execution of DAA instruction:

1. If the value of the low order four bits (03-00) in the accumulator is greater than

9 or if auxiliary carry flag is set, the instruction adds 6 '(06) to the low-order four

bits.

2. If the value of the high-order four bits (07-04) in the accumulator is greater

than 9 or if carry flag is set, the instruction adds 6(06) to the high-order four bits.

Source program :

 LXI SP, 27FFH : Initialize stack pointer

 MOV E, A : Store the contents of

accumulator

 ANI 0FH : Mask upper nibble

 CPI 0A H : Check if number is greater

than 9

 JC SKIP : if no go to skip

 MOV A, E : Get the number

 ADI 06H : Add 6 in the number

 JMP SECOND : Go for second check

 SKIP: PUSH PSW : Store accumulator

and flag contents in stack

 POP B : Get the contents of accumulator

in B register and flag register contents in

C register

 MOV A, C : Get flag register contents in

accumulator

 ANI 10H : Check for bit 4

 JZ SECOND : if zero, go for second

check

 MOV A, E : Get the number

 ADI 06 : Add 6 in the number

 SECOND: MOV E, A : Store the contents

of accumulator

 ANI FOH : Mask lower nibble

 RRC

 RRC

 RRC

 RRC : Rotate number 4 bit right

 CPI 0AH : Check if number is greater

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=38-Sub%20routine%20to%20%20perform%20the%20task%20of%20DAA.gif

than 9

 JC SKIPl : if no go to skip 1

 MOV A, E : Get the number

 ADI 60 H : Add 60 H in the number

 JMP LAST : Go to last

 SKIP1: JNC LAST : if carry flag = 0 go

to last

 MOV A, E : Get the number

 ADI 60 H : Add 60 H in the number

 LAST: HLT

QN 1. Program to generate Fibonacci number

Statement: Write an assembly language program to generate fibonacci number.

Source program :

 MVI D, COUNT : Initialize counter

 MVI B, 00 : Initialize variable to store previous number

 MVI C, 01 : Initialize variable to store current number

 MOV A, B :[Add two numbers]

 BACK: ADD C :[Add two numbers]

 MOV B, C : Current number is now previous number

 MOV C, A : Save result as a new current number

 DCR D : Decrement count

 JNZ BACK : if count 0 go to BACK

 HLT: Stop.

QN 1. Generate a delay of 0.4 seconds

Statement: Write a program to generate a delay of 0.4 sec if the crystal frequency is 5 MHz.

Calculation: In 8085, the operating frequency is half of the crystal

frequency,

ie.Operating frequency = 5/2 = 2.5 MHz

Time for one T -state =

Number of T-states required = 1 x 106

Source program :

 LXI B, count : 16 - bit count

 BACK: DCX B : Decrement count

 MOV A, C

 ORA B : Logically OR Band C

cs
itn

ep
al

Source: www.csitnepal.com

 JNZ BACK : If result is not zero repeat

QN 1. Arrange in Descending order

Statement: Arrange an array of 8 bit unsigned no in descending order

 START:MVI B, 00 ; Flag = 0

 LXI H, 4150 ; Count = length of array

 MOV C, M

 DCR C ; No. of pair = count -1

 INX H ; Point to start of array

 LOOP:MOV A, M ; Get kth element

 INX H

 CMP M ; Compare to (K+1) th element

 JNC LOOP 1 ; No interchange if kth >= (k+1) th

 MOV D, M ; Interchange if out of order

 MOV M, A ;

 DCR H

 MOV M, D

 INX H

 MVI B, 01H ; Flag=1

 LOOP 1:DCR C ; count down

 JNZ LOOP ;

 DCR B ; is flag = 1?

 JZ START ; do another sort, if yes

 HLT ; If flag = 0, step execution

QN 1. Data transfer from one memory block to other memory block.

Statement: Transfer ten bytes of data from one memory to another memory block. Source memory

block starts from memory location 2200H where as destination memory block starts from memory

location 2300H.

 LXI H, 4150 : Initialize memory pointer

 MVI B, 08 : count for 8-bit

 MVI A, 54

 LOOP : RRC

 JC LOOP1

 MVI M, 00 : store zero it no carry

 JMP COMMON

 LOOP2: MVI M, 01 : store one if there is a carry

 COMMON: INX H

 DCR B : check for carry

 JNZ LOOP

 HLT : Terminate the program

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. Find the factorial of a number

Statement: Program to calculate the factorial of a number between 0 to 8

Source program :

 LXI SP, 27FFH ; Initialize

stack pointer

 LDA 2200H ; Get the number

 CPI 02H ; Check if number is

greater than 1

 JC LAST

 MVI D, 00H ; Load number

as a result

 MOV E, A

 DCR A

 MOV C,A ; Load counter one

less than number

 CALL FACTO ; Call

subroutine FACTO

 XCHG ; Get the result in HL

 SHLD 2201H ; Store result in

the memory

 JMP END

 LAST: LXI H, 000lH ; Store

result = 01

 END: SHLD 2201H

 HLT

Subroutine Program:

 FACTO:LXI H, 0000H

 MOV B, C ; Load counter

 BACK: DAD D

 DCR B

 JNZ BACK ; Multiply by

successive addition

 XCHG ; Store result in DE

 DCR C ; Decrement counter

 CNZ FACTO ; Call

subroutine FACTO

 RET ; Return to main

program

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=43-Find%20the%20factorial%20of%20a%20number.gif

QN 1. Split a HEX data into two nibbles and store it

Statement: Write a simple program to Split a HEX data into two nibbles and store it in memory

Source program :

 LXI H, 4200H : Set pointer data for array

 MOV B,M : Get the data in B-reg

 MOV A,B : Copy the data to A-reg

 ANI OFH : Mask the upper nibble

 INX H : Increment address as 4201

 MOV M,A : Store the lower nibble in memory

 MOV A,B : Get the data in A-reg

 ANI FOH : Bring the upper nibble to lower nibble position

 RRC

 RRC

 RRC

 RRC

 INX H

 MOV M,A : Store the upper nibble in memory

 HLT : Terminate program execution

QN 1. Add two 4-digit BCD numbers

Statement: Add two 4 digit BCD numbers in HL and DE register pairs and store result in memory

locations, 2300H and 2301H. Ignore carry after 16 bit.

Sample Problem:

(HL) =3629

(DE) =4738

Step 1 : 29 + 38 = 61 and auxiliary carry flag

= 1

:.add 06

61 + 06 = 67

Flowchart for Program

cs
itn

ep
al

Source: www.csitnepal.com

Step 2 : 36 + 47 + 0 (carry of LSB) = 7D

Lower nibble of addition is greater than 9, so

add 6.

7D + 06 = 83

Result = 8367

Source program :

 MOV A, L : Get lower 2 digits of no. 1

 ADD E : Add two lower digits

 DAA : Adjust result to valid BCD

 STA 2300H : Store partial result

 MOV A, H : Get most significant 2

digits of number

 ADC D : Add two most significant

digits

 DAA : Adjust result to valid BCD

 STA 2301H : Store partial result

 HLT : Terminate program execution.

QN 1. Subtraction of two BCD numbers

Statement: Subtract the BCD number stored in E register from the number stored in the D register.

Source Program:

MVI A,99H

SUB E : Find the 99's complement of subtrahend

INR A : Find 100's complement of subtrahend

ADD D : Add minuend to 100's complement of subtrahend

DAA : Adjust for BCD

HLT : Terminate program execution

Note: When two BCD numbers are subtracted, we can use DAA instruction for

ajusting the result to BCD. Therefore, the subtraction of BCD number is carried

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=46-Add%20two%204-digit%20BCD%20numbers.gif

out 10's complement or 100's complement.

The 10's complement of a decimal number is equal to the 99's complement plus 1.

The 99's complement of a number can be found by subtracting the number from

99.

The steps for finding 100's complement BCD subtraction are :

 Find the 100's complement of subtrahend

 Add two numbers using BCD adition

QN 1. Multiply two 2-digit BCD numbers

Statement: Write an assembly language program to multiply 2 BCD numbers

Source Program:

 MVI C, Multiplier : Load BCD multiplier

 MVI B, 00 : Initialize counter

 LXI H, 0000H : Result = 0000

 MVI E, multiplicand : Load multiplicand

 MVI D, 00H : Extend to 16-bits

 BACK: DAD D : Result Result + Multiplicand

 MOV A, L : Get the lower byte of the result

 ADI, 00H

 DAA : Adjust the lower byte of result to BCD.

 MOV L, A : Store the lower byte of result

 MOV A, H : Get the higher byte of the result

 ACI, 00H

 DAA : Adjust the higher byte of the result to BCD

 MOV H, A : Store the higher byte of result.

 MOV A, B : [Increment

 ADI 01H : counter

 DAA : adjust it to BCD and

 MOV B,A : store it]

 CMP C : Compare if count = multiplier

 JNZ BACK : if not equal repeat

 HLT : Stop

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. 2-Digit BCD to binary conversion

Statement: Convert a 2-digit BCD number stored at memory address 2200H into its binary

equivalent number and store the result in a memory location 2300H.

Sample problem 1:

(2200H) = 67H

(2300H) = 6 x OAH + 7 = 3CH + 7 = 43H

Source program :

 LDA 2200H : Get the BCD number

 MOV B, A : Save it

 ANI OFH : Mask most significant four

bits

 MOV C, A : Save unpacked BCDI in C

register

 MOV A, B : Get BCD again

 ANI FOH : Mask least significant four

bits

 RRC : Convert most significant four bits

into unpacked BCD2

 RRC

 RRC

 RRC

 MOV B, A : Save unpacked BCD2 in B

register

 XRA A : Clear accumulator (sum = 0)

 MVI D, 0AH : Set D as a multiplier of 10

 Sum: ADD D : Add 10 until (B) = 0

 DCR B : Decrement BCD2 by one

 JNZ SUM : Is multiplication complete? i

if not, go back and add again

 ADD C : Add BCD1

 STA 2300H : Store the result

 HLT : Terminate program execution

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=54-2-Digit%20BCD%20to%20binary%20conversion.gif
http://www.8085projects.info/image.axd?picture=54-2-Digit%20BCD%20to%20binary%20conversion.gif

QN 1. 2-Digit BCD to binary conversion

Statement: Convert a 2-digit BCD number stored at memory address 2200H into its binary

equivalent number and store the result in a memory location 2300H.

Sample problem 1:

(2200H) = 67H

(2300H) = 6 x OAH + 7 = 3CH + 7 = 43H

Source program :

 LDA 2200H : Get the BCD number

 MOV B, A : Save it

 ANI OFH : Mask most significant four

bits

 MOV C, A : Save unpacked BCDI in C

register

 MOV A, B : Get BCD again

 ANI FOH : Mask least significant four

bits

 RRC : Convert most significant four bits

into unpacked BCD2

 RRC

 RRC

 RRC

 MOV B, A : Save unpacked BCD2 in B

register

 XRA A : Clear accumulator (sum = 0)

 MVI D, 0AH : Set D as a multiplier of 10

 Sum: ADD D : Add 10 until (B) = 0

 DCR B : Decrement BCD2 by one

 JNZ SUM : Is multiplication complete? i

if not, go back and add again

 ADD C : Add BCD1

 STA 2300H : Store the result

 HLT : Terminate program execution

Flowchart for program

cs
itn

ep
al

Source: www.csitnepal.com

http://www.8085projects.info/image.axd?picture=54-2-Digit%20BCD%20to%20binary%20conversion.gif
http://www.8085projects.info/image.axd?picture=54-2-Digit%20BCD%20to%20binary%20conversion.gif

QN 1. HEX to Decimal conversion

Statement: Convert the HEX number in memory to its equivalent decimal number

Source program :

 LXI H, 4150 ; Point to data

 LXI B, 0000 ; Initialize hundreds= 0, Tens=0

 MOV A, M ; Get hex data to A

 LOOP: SUI 64

 JC LOOP 1

 INR B ; hundreds= hundreds+1

 JMP LOOP

 LOOP 1: ADI 64 ; if subtracted extra, add it clear carry flag

 LOOP 2: SUI 0A

 JC LOOP 3

 INR C ; Tens=tens+1

 JMP LOOP 2

 LOOP 3: ADI 0A ; If subtracted extra, add it again

 INX H ; A = Units

 MOV M, B ; store hundreds

 MOV B, A ; Combine Tens in C &

 MOV A, C ; Units in A to form a

 RLC ; Single 8-bit number

 RLC

 RLC

 RLC

 ADD B

 INX H

 MOV M, A ; Store tens & Units

 HLT

Note: In this experiment the number is converted to its equivalent decimal

number using the following logic. First count the number of hundreds, the

number of tens & units present in that hex number. Then add up to get the

equivalent decimal number.

Converting A9 we get:

A9 /64=45 Hundreds = 01

Since 64(100 decimal) cannot be subtracted from 45 no. of hundreds = 01. Now

count tens 45/0A=3B Tens = 01 Now from 09, 0A cannot be subtracted. Hence

tens = 06 the decimal equivalent of A9 is 169.

cs
itn

ep
al

Source: www.csitnepal.com

QN 1. HEX to binary conversion

Statement:Convert an 8 bit hex no to its binary form & store in memory

Source Program:

 LXI H, 4150 : Initialize memory pointer

 MVI B, 08 : count for 8-bit

 MVI A, 54

 LOOP : RRC

 JC LOOP1

 MVI M, 00 : store zero it no carry

 JMP COMMON

 LOOP2: MVI M, 01 : store one if there is a carry

 COMMON: INX H

 DCR B : check for carry

 JNZ LOOP

 HLT : Terminate the program

cs
itn

ep
al

Source: www.csitnepal.com

