Numerical Method (2067- second batch)

1. Discuss methods of Half-interval and Newton’s for solving the non-linear equation f(x)
=0. Illustrate the methods by figures and compare them stating their advantages and
disadvantages.

Half-Interval method:

Suppose that f(x) is continuous function in the interval [a,, by] and f(a,y) f(by) < 0, then by
intermediate value theorem, there exists a root of f(x) in the interval (ay, by). We calculate the

first approximation of this root as ¢, = @. If f(cy) = 0, then ¢, is the root of f(x). If not
then we bisect the interval [a,, by] into two equal length sub-intervals [ay, ¢o]& [co, by] and set
a; = Ay, b1 = Cp lff(ao)f(CO) <0 and a; = Cy, b1 = bO lff(CO)f(bo) < 0. The Second

approximation of the root is now calculated as ¢; = @. If f(cy) = 0, then ¢y is the root of

f(x). If not then we again bisect the interval [a4, b;] into two equal length sub-intervals
[al, Cl]& [Cli bl] and set a, = aq, bz =C lff(al)f(cl) <0 &az = (1, b2 = bl lf

f(c1)f (b1) < 0 and then calculate the third approximation as ¢, = @ and continuing the

above process.

Fig: Half Interval Method
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This process of calculating the approximations cy, ¢4, €5, ... is repeated until we find a root of
f (x) or a satisfactory approximation of it.

Advantages:

e This method is guaranteed to work for any continuous function f(x) on the interval [a, b]
with f(a)f(b) < 0.

e The number of iterations required to achieve a specified accuracy is known in advance.

Disadvantage:

e The method converges slowly, i.e., it requires more iterations to achieve the same
accuracy when compared with some other methods for solving non-linear equations.

Newton’s Method:

Let f(x) be a differentiable function and let x,, be an initial points which is sufficiently close to
the root of f(x). Let (x;, 0) be the point of intersection of the x-axis and the tangent drawn to
the curve f(x) at (xo, f (x0)). Newton’s method takes this point as the first approximation for
the root of f(x). To calculate this point we note that the slope of the tangent to f(x) at x = x, is
equal to the slope of the line through the points (x,0) and (xo, f (%)) i-e.

(f(x0) — 0) f(x0)

fllxg) == =, =xg

Xo — X1 f(xo)

Fig: Newton-Raphson Method

Source: www.csitnepal.com Page 2



Numerical Method (2067- second batch)

If f(x1) = 0, then x; is the required root of f(x). If not, then we take the point of intersection
(x4, 0) of the x-axis and the tangent to the f(x) at x = x; as the next approximation of the root.
As above, we have

Yo = 1 — f(xy)
2 ! f'(x)
In general, the (n + 1) approximation of the root of f(x) is given by the formula:

fe)

xn+1:xn—f,(x) , n=2
n

We continue to calculate the approximations Xy, X,, X3, ... using the above formula until we find
the root or its satisfactory approximation.

Advantages:

e Unlike the incremental search and bisection methods, the Newton-Raphson method isn’t
fooled by singularities.

e Also, it can identify repeated roots, since it does not look for changes in the sign of f(x)
explicitly.

e [t can find complex roots of polynomials, assuming you start out with a complex value
for x;.

e For many problems, Newton-Raphson converges quicker than either bisection or
incremental search.

Disadvantages:

e The Newton-Raphson method only works if you have a functional representation of

f'(x). Some functions may be difficult or impossible to differentiate. You may be able to
fe+Ax)—f (%)

work around this by approximating the derivative f'(x) = o

e The Newton-Raphson method is not guaranteed to find a root.

2. Derive the equation for Lagrange’s interpolating polynomial and find the value of f(x) at
x=1 for the following:

X 1 2 2 4
f(x) 1 -9 11 69

Solution: Here,
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() = (x = x)(x = x2) (x — x3) (x+2)(x—2)(x—4)
0 (xo _x1)(x0_x2)(xo_x3) (-1+2)(-1-2)(-1-4)
=E(x+2)(x—2)(x—4)
L) = (x—x)(x—x)(x—x3)  (x+1Dx—-2)(x—4)
BT g —x) (o — 1) (e —x3)  (—2+D(-2-2)(-2-4)
1
=—ﬁ(x+1)(x—2)(x—4)
_ = x)r—x)x—x3) _ (x+Dx+2)x-4) 1 B
E R AN [ [emr B R TR [y B 7 A
L) = (x — x0) (x — x1) (x — x3) (x+1)(x+2)(x—2)_i( DGt D2

(x3 —x0)(x3 —x1)(x3 —x,) (“4+1)4+2)(4-2) 60
And Lagrange’s interpolating polynomial is given by:

P3(X) = folo(x) + f1l1(x) + lez(x) + f3l3(x)

(—1)

1
Py(x) = (—1)E(x +2)(x—=2)(x—4)+ (-9) x+1Dx—-2)(x—4)

( D

+ 11 (x+1)(x+2)(x—4)+69—(x+1)(x+2)(x—2)

1
o Py(x) = x3 tx+yg

Now, the value of f(x) at x = 1 is given as;

1 9
P.(D)=134+1+-==
(1) + +4_ 1

3. Write Newton-cotes integration formulas in basic form for x=1, 2, 3 and give their

. 1 _ . .. . .
composite rules. Evaluate | 0 © * dx using the Gaussian integration three point formula.

To find the value of f; f (x)dx numerically using the Newton-Cotes method, we first of all
divide the interval [a, b] into n equal parts of length h by points x; = a + ih,i = 0,1,2,...,n
where h = T Then a = x5 < x; < x5 <+ < x, = b forms a partition of [a, b]. Let B, (x)
be the interpolating polynomial of f(x) interpolating at n + 1 points (x;, f;),i = 0,1,2, ...,n
where f; = f(x;). Then B,(x) is given by the formula

P,(x) = fo + SA, +¥A2fo L S6-D ...n(!S—n+ 1

X—Xo

A% fy

Where, S = & AN f, = MN71f, — N=1f, are the j" forward differences.
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We now approximate the value of f: f(x)dx by fab P,(x)dx.
Therefore, f: f(x)dx =~ fab P,(x)dx

Ss—1)..(§—n+1)
n!

f” Ss-1) ,
= lf0+SAf0+—2! A% fy + -+ A™fo|dx

Which is the Newton-Cotes formula for numerically evaluated f: f(x)dx.

Numerical:

(1-0)y+1+0

Letx = = 0.5y + 0.5

Then the limit of integration are changed from (0, 1) to (—1, 1) so that

1 _ 1
e—xzdx — 1-0 e—(0.5y+0.5)2dy
0 2

-1

Using the Gaussian 3-point formula, we get
1
j e—(0.5y+o.5)2dy
-1

= 0.55556 x e~ (0:5%(=0.77460)+0.5)* 4 ) 88889 x ¢~ (0.5%0+0.5) } () 55556
% e—(0.5X0.77460+0.5)2

= 0.54855 + 0.69227 + 0.25282 = 1.49364

L 1-0
2
f e dx = > X 1.49364 = 0.74682
0

4. Solve the following system of algebraic linear equation using Gauss-Jordan algorithm.

0 2 0 1\ /X 0
2 2 3 2\[x)| [-2
4 -3 0 1 |\x3) |-7
6 1 -6 -5/ \X 6

The augmented matrix of the system is as follow:
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0 2 0 1 0
2 2 3 2 =2
4 -3 0 1 -7

6 1 -6 -5 6
Interchanging first row with second row: R1 < R2

2 2 3 2 =2
0 2 0 1 0
4 -3 0 1 -7
6 1 -6 -5 6

Normalize the first row: R1 — %Rl

[ 3 _
11 5 1 1]I
lo 2 o 1 ol
|l4 3 0 1 —7JI
6 1 -6 -5 6

Eliminate x; from 2", 3" and 4" row: R2 — R2;R3 —» R3 — 4R1;R4 - R4 — 6R1

|[1 1 1 —1]I
lo 2 1 0 |
lo 7 —6 -3 —3J
0 -5 —15 —11 12

3
2
0

Normalize the second row: R2 — %RZ

I 1
2
0 1 0 0

o -7 -6 -3 -3
0 -5 —-15 -11 12

Eliminate x, from 1%, 3" and 4" row: R1 - R1 — R2;R3 - R3 + 7R2; R4 — R4 + 5R2

N~ -

1 0 > ! 1_
2 2

01 O ! 0
2

0 0 6 ! 3
2
17

0 0 -15 -y 12

Normalize the third row: R3 —» — % R3
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10 > 1 1
2 2
01 o L
2
00 1 11
12 2
17
00 -15 -2 12

Eliminating x5 from 1%, 2" and 4 row: R1 - R1 — %RB :R2 > R2;R4 - R4 + 15R3

100 2 7
8 2
010 L o
2
001 -1 1
12z 2
. 117 39
1z 7

Normalize the fourth row: R4 - — %RAL

_1 0 0 > A
8 4

0 1 0 - 0
2

0 0 1 ! !
12 2

0 0 O 1 —2-

Eliminating x, from 1*, 2" and 3¢ row: R1 - R1—ZR4;R2 - R2 — R4 ;R3 - R3 + —R4

100 0 —1
2
01 0 0 1
0 01O 1
3
0O 0 0 1 -2
Therefore, the solution is x; = —% ;Xo =153 =§ J Xy = —2
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5. Write an algorithm and computer program to solve system of linear equation using
Gauss-Seidel iterative method.

Algorithm:
Input:
A diagonally dominant system of linear equations Ax = b
Process:
b;

FORi=1TOnSET x; = —

aii
BEGIN: SET key = 0
FORi=1TOn
{ SET sum = b;
FORj=1TOnANDj =1

{ SET sum = sum — (a;; * x;)
}

SET dummy = sum/a;

IF key = 0 AND |%| > error
THEN

SET key =1

SET x; = dummy

}

IF key = 1 THEN
GOTO BEGIN
Output:

Approximate solution x;;i = 1,2,3,...,nof Ax = b

Computer program:

#include<iostream.h>

#include<conio.h>
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#include<iomanip.h>
#include<math.h>
#define MAXIT 50
#define EPS 0.000001
void gaseid(int n, float a[ 10][10], float b[10], float x[10], int *count, int *status);
void main()
{ float a[10][10], b[10], x[10];
int 1, j, n, count, status;
cout<<"** SOLUTION BY GUASS SEIDEL ITERATION METHOD **"<<end],
cout<<"input the size of the system:"<<endl;
cin>>n;
cout<<"input coefficients, a(i.j)"<<endl;
cout<<"one row on each line"<<endl;
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
cin>>ali][jl;
cout<<"input vector b:"<<endl;
for(i=1; i<=n; i++)
cin>>b[i];
gaseid(n, a, b, x, &count, &status);
if(status==2)

{ cout<<"no CONVERGENCE in "<<MAXIT<<"
iterations."<<endl<<endl<<endl;

}

else

{ cout<<"SOLUTION VECTOR X"<<end]l;
for(i=1; i<=n; i++)

cout<<setw(15.6)<<x[i]<<endl;
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cout<<"iterations= "<<count;

}
getch();

}
void gaseid(int n, float a[ 10][10], float b[10], float x[10], int *count, int *status)
{ int 1, j, key;
float sum, x0[10];
for(i=1; i<=n; i++)
xO[i]=b[i}/a[i][i];
*count=1;
begin:
key=0;
for(i=1; i<=n; i++)
{ sum=Db[i];
forG=1; j<=n; j++)
L ifl=)
continue;
sum=sum-a[i][j]*x0[j];
}
x[1]=sum/a[i][i];
if(key==0)
{ if(fabs((x[1]-xO0[1])/x[1])>EPS)
key=1;

}
if(key==1)
{ if(*count=—=MAXIT)

{ *status=2;
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return;
J
else
{ *status=1;
for(i=1; i<=n; i++)
xO[1]=x[i];
J
*count=*count+1;
goto begin;
J
return;

6. Explain the Picard’s proves of successive approximation. Obtain a solution up to the fifth
2
approximation of the equation % =y + x such that y = 1 when x = 0 using Picard’s

process of successive approximation.
Suppose that we are given a differential equation of the form Z—z =f(x,y);y(x) =y.

Then dy = f(x,y)dx

Integrating both sides of above equation in the interval (x,, x), we get

[[ay = rley@)a
y6) =y = [ f(ey®)de

y(x) = y(xg) + j f(t,y@®)dt ... .. ()

Now to solve equation (1), we use the method of iteration as follows:

We replace y(t) on the right of equation (i) by y, and calculate the first approximation y; (x) of
y(x) as y1(x) = yo + [ f(t,yo)de
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The second approximation y,(x) of y(x) is calculated by substituting y(t) on the right of
equation (i) as y,(x) = y, + f;o f(t,y.(®)dt

Proceeding similarly, the n** approximation of y(x) is given by the iteration y, (x) = y, +

[y F(tyna(®)dt

This iterative method of solving the differential equation is known as Picard’s Method.

Numerical:
ForZ—z=y+x wheny =1&x =0;i.e.y(x) =y(0) =1

Picard’s iteration method is given by

Ya(X) = yo +f f& Y1 (@®)dt =1 +f f (& -1 (D)dt

X0 0

When x = 1, we get

(t+1)2"_1+(x+1)2 1
2 0_ 2 2

yi(x) =1+ jxf(t,yo(t))dt =1+ fx(t +1dt =1+ [
0 0

x2

=1 -
+x+

When x = 2, we get

x x t2 31%
3’2(X)=1+j f(t:yl(t))dt=1+J <t+1+t+?>dt=1+[t+t2+€
0 0

x3 ’
=1+x+x2+€

When x = 3, we get

X X t3 t3 t4-x
y3(x)=1+ff(t,yz(t))dt=1+f t+14+t+t24+—)dt=14+|t+t>+—+—
0 0 6 3 24|,

x3  x*

_ 2 _

=14+x+x +3+24

When x = 4, we get

x x (3 4
3’4(x)=1+jf(t,ya(t))dt=1+J <t+1+t+t2+?+ﬁ)dt
0 0

3 t* o r x3 x*  x°
0

=14+|t+t°+ -+ =+ =1+x+°+—+=+—
[ 312 120 YT T2 120

When x = 5, we get
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* x £3 4 5
ys(x)=1+ff(t,y4(t))dt=1+f <t+1+t+t2+ +—+—>dt
0 0

3 " 12 7120
PO PO A AL x—1+ P A A
= 3712760 720] x+xf o+ ot et 70

7. Derive a difference equation to represent a Laplace’s equation. Solve the following
Laplace equation:

?u  d%u ey
Wi‘ﬁ—OWlthanSXS:;,OSyS:;

For the rectangular plate given as:

Ay

4 =200

3

2

4 =200 4 =100

1

0 >
4=100

Difference equation to represent Laplace’s equation:

Let u = u(x, y) be a function of two independent variables x & y. Then by Taylor’s formula:

2 3

u(x +h,y) =ulx,y) + hu,(x,y) + uxx(x V) + h uxxx(x Y)+ o ()
h? h3

u(x —h,y) =u(x,y) — huy(x,y) + uxx(x y) — uxxx(x Y)+ (ii)
k? k3

ulx,y +k) =ulx,y) + ku,(x,y) + = uyy(x y) +— uyyy(x Y)+ (iii)
kZ 3

ulx,y — k) =ulx,y) — ku,(x,y) + = uyy(x y) — uyyy Coy)+ (iv)

Adding equations (i) & (ii) and ignoring the terms containing h* and higher powers, we get

u(x + hy)+ulx —hy) =2u(x,y) + h*u,,(x,y)

1
or, Uy, (x,y) = 2 [u(x + h,y) —2ulx,y) + u(x — h,y)] ... (4)
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Adding equations (iii) & (iv) and ignoring the terms containing k* and higher powers, we get

u(x,y + k) +ulx,y — k) = 2u(x,y) + k*uy,, (x,y)

1
or, Uyy (X, y) = 2 [uCe,y +k) —2u(x,y) + ulx,y — k)] ........ (B)
Now if uyy + u,, = 0 is the given Laplace’s equation, then from equation (A) & (B) we have
1 1
2 [ulx + h,y) = 2u(x,y) + u(x — h,y)] + 2 [uCx,y + k) — 2u(x,y) + ulx,y —k)] =0

Choosing h = k, we get
ulx+hy)+ul,y+h)+ulx—nhy)+ulx,y—h)—4ulx,y)=0

~ulx,y) = %[u(x +hy)+ulx,y+h)+ulx—~hy) +ulx,y—h)]

is the difference equation for Laplace’s equation.

Numerical:

From the difference equation for Laplace’s equation, we have

2004+ 200 +uy +uzs —4u; = 0= —4uy +u, +u; = —400 ........ ()
200 + 100 + uy + uqy —4u, = 0= uy —4u, +uy, = =300 ... ... (i)
u; + 200+ 100 + uy —4uz = 0= uy —4uz +u, = —-300 ........ (iit)
U, +uz + 100 + 100 — 4uy, = 0 = u, +uz —4uy, = —-200 ........ (iv)

Solving the equations (i), (i), (iii) & (iv), we get

u, = 175
uz = u3 = 150
Uy = 125

(OR) 7. Derive a difference equation to represent Poisson’s equation. Solve the Poisson’s
equation V2f = 2x2y? over the square to main 0 < x < 3,0 < y < 3 with f = 0 on the
boundary and h = 1.

Difference equation to represent Poisson’s equation:

Let u = u(x, y) be a function of two independent variables x & y. Then by Taylor’s formula:
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h? h3

u(x + h,y) =ulx,y) + hu,(x,y) + uxx(x y) + uxxx(x Y)+ o (D)
h2 3

u(x —h,y) = u(x,y) — huy(x,y) + uxx(x y) — uxxx(x V) (ii)
k? k3

ulx,y + k) =ulx,y) + ku,(x,y) + = uyy(x y) +— uyyy(x Y) (iii)
kZ 3

ulx,y — k) =ulx,y) — ku,(x,y) + =+ uyy(x y) — uyyy(x Y)+ o (iv)

Adding equations (i) & (ii) and ignoring the terms containing h* and higher powers, we get

u(x + hy) +ulx — hy) = 2u(x,y) + h2u(x,y)

1
or, Uy (X, y) = nz [u(x + h,y) —2u(x,y) + u(x — h,y)] ........ (4)
Adding equations (iii) & (iv) and ignoring the terms containing k* and higher powers, we get

u(x,y + k) +ulx,y — k) = 2u(x,y) + k*uy, (x,y)

1
or, Uyy (x,y) = = [uCe,y + k) — 2u(x,y) + ulx,y — k)] ......... (B)

Now if Uy, + Uy, = g(x,y) is the given Poisson’s equation, then from equation (A) & (B)
choosing h = k we have,

u(x +h,y)+ulx,y+h) +ulx—h,y) +ulx,y — h) —4u(x,y) = h?g(x,y)
which is the difference equation for Poisson’s equation.

Numerical:

The domain is divided as follows with f = 0 at the boundary

o
o

53
°

Now, from the difference equation for the Poisson’s equation, we have

04+0+f,+fz—4f; =12 x2x 12 x 22
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Solving these equations, we get

11
fi= o
43
fo==7%
13
=7
11
h==7
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