Attempt all the questions:

Q.N.1) Define the fixed point iteration method. Given the function $f(x)=x^{\mathbf{2}} \mathbf{- 2 x} \mathbf{x}=\mathbf{0}$, rearrange the function in such a way that the iteration method converses to its roots.
$(2+3+3)$
To find the root of $f(x)=0$, we first re arrange this into an equivalent form $x-g(x)=0$, or $x=g(x)$. So, c is a root of $f(x)$, i.e. $f(c)=0$ if and only if $c=g(c)$. Such a point c is called the fixed point or root of the equation $x=g(x)$. Therefore finding the root of $f(x)=0$ is equivalent to finding the fixed point of $x=g(x)$. The fixed point of $x=g(x)$ is found iteratively as follows:

An initial guess x_{0} is made which is then used to get the next approximation as $x_{1}=g\left(x_{0}\right)$. This is then used to obtain $x_{2}=g\left(x_{1}\right)$. This iterative process can be expressed in general form as:

$$
x_{n+1}=g\left(x_{n}\right) ; n=0,1,2, \ldots
$$

We continue this process until the fixed point or a sufficient approximation of it is found.

Numerical:

Consider the equation $f(x)=x^{2}-2 x-3=0$ whose roots are $x=1$ and $x=3$. Then the above equation can be written as
$x=g_{1}(x)=\sqrt{2 x+3}$
$x=g_{2}(x)=\frac{x^{2}-3}{2}$
$x=g_{3}(x)=\frac{3}{x-2}$

If we start with $x_{0}=4$ and the iteration $x_{n+1}=\sqrt{2 x_{n}+3}$ obtained from (i), we get the following values.
$x_{0}=4$
$x_{1}=\sqrt{2 \times 4+3}=\sqrt{11}=3.31662$
$x_{2}=\sqrt{2 \times 3.31662+3}=3.10375$
$x_{3}=3.03439$
$x_{4}=3.01144$
$x_{5}=3.00381$
Therefore, $x_{n}{ }^{\prime} s$ converge to the root $x=3$ in this case.
If we start with $x_{0}=4$ and the iteration with $x_{n-1}=\frac{3}{x_{n}-2}$ obtained from (iii) we get the values
$x_{0}=4$
$x_{1}=\frac{3}{4-2}=1.5$
$x_{2}=-6$
$x_{3}=-0.375$
$x_{4}=-1.263158$
$x_{5}=-0.919355$
$x_{6}=-1.02762$
$x_{7}=-0.990876$
$x_{8}=-1.00305$
Therefore, the $x_{n}{ }^{\prime} s$ converge to the root $x=-1$
Q.N.2) What do you mean by interpolation problem? Define divided difference table \& construct the table from the following data set. (2+2+4)

X	3.2	2.7	1.0	4.8	5.6
F	22.0	17.8	14.2	38.3	51.7

Suppose we are given a set of $n+1$ data points $\left(x_{i}, f_{i}\right), i=0,1,2, \ldots, n$. Then interpolation is the method of finding a function $f(x)$ called an interpolation function, such that $f(x)=f_{i}, 0 \leq$ $i \leq n$ and estimating the value of f by $f(x)$ for some x lying in between $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$.

Divided difference table is a recursive division process whose $k^{\text {th }}$ degree polynomial approximation to $f(x)$ can be written as

$$
\begin{aligned}
f(x)=f\left[x_{0}\right] & +\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]+\cdots \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right) f\left[x_{0}, x_{1}, \ldots, x_{k}\right]
\end{aligned}
$$

The divided difference table from the given data sets can be constructed as follows:

x_{i}	3.2	2.7	1.0	4.8	5.6
$f\left[x_{i}\right]$	22.0	17.8	14.2	38.3	51.7
$f\left[x_{i}, x_{i+1}\right]$	8.4			2.12	

$f\left[x_{i}, x_{i+1}, x_{i+2}\right]$	2.85	2.01	2.26
$f\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+3}\right]$	-0.52		
$f\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+3}, x_{i+4}\right]$	0.25		

OR

Find the least squares line that fits the following data.

X	1	2	3	4	5	6
Y	5.04	$\mathbf{8 . 1 2}$	$\mathbf{1 0 . 6 4}$	13.18	16.20	20.04

What do you mean by least squares approximation?

Here, $n=6$

x_{i}	y_{i}	x_{i}^{2}	$x_{i} y_{i}$
1	5.04	1	5.04
2	8.12	4	16.24
3	10.64	9	31.92
4	13.18	16	52.72
5	16.2	25	81
6	20.04	36	120.24
$\sum x_{i}=21$	$\sum y_{i}=73.22$	$\sum x_{i}^{2}=91$	$\sum x_{i} y_{i}=307.16$

Now,

$$
b=\frac{6 \times 307.16-21 \times 73.22}{6 \times 91-21^{2}}=\frac{305.34}{105}=2.91
$$

And

$$
a=\frac{73.22-2.91 \times 21}{6}=\frac{12.11}{6}=2.02
$$

Therefore, the least square line that can be fit is $y=2.02+2.91 x$

Least Square Approximation (LSA):

Let $\left(x_{i}, y_{i}\right), i=1,2,3, \ldots, n$ be a given set of n pairs of data points and let $y=f(x)$ be the curve that is fitted to this data. At $x=x_{i}$, the given value of the ordinate is y_{i} and the corresponding value on the fitting curve is $f\left(x_{i}\right)$. Then the error of approximating at $x=x_{i}$ is

$$
e_{i}=y_{i}-f\left(x_{i}\right)
$$

Let

$$
S=\left(y_{1}-f\left(x_{1}\right)\right)^{2}+\left(y_{2}-f\left(x_{2}\right)\right)^{2}+\cdots+\left(y_{n}-f\left(x_{n}\right)\right)^{2}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}=\sum_{i=1}^{n} e_{i}^{2}
$$

Then the method of least squares approximation consists of finding an expression $y=f(x)$ such that the sum of the squares of the errors is minimized. i.e. S is minimum.
Q.N.3) Derive a composite formula of the trapezoidal rule with its geometrical figure. Evaluate $\int_{0}^{1} e^{-x} d x$ using this rule with $n=5$, up to 6 decimal places.
(4+4)

Composite trapezoidal rule:

Suppose we have to evaluate the integral $\int_{a}^{b} f(x) d x$. We first divide the interval $[a, b]$ into n equal spaced sub-intervals by points $x_{1}=x+i h$, where $i=0,1,2, \ldots, n \& h=\frac{b-a}{n}$. Then in
each sub-interval $\left[x_{i-1}, x_{i}\right], i=1,2,3, \ldots, n$. We approximate the integral $\int_{x_{i-1}}^{x_{i}} f(x) d x$ by the trapezoidal formula $\frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]$ so that

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x \\
=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\cdots+\frac{h}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
\quad=\frac{h}{2}\left[f\left(x_{0}\right)+2\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)\right)+f\left(x_{n}\right)\right]
\end{gathered}
$$

Therefore,

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f_{0}+2\left(f_{1}+f_{2}+\cdots+f_{n-1}\right)+f_{n}\right]
$$

Which is the composite trapezoidal rule for calculating $\int_{a}^{b} f(x) d x$.

Numerical:
Here, $a=0 ; b=1 ; n=5$
So, $h=\frac{b-a}{n}=0.2$
Now we get the following table

x	0	0.2	0.4	0.6	0.8	1.0
$f(x)$	1	0.960789	0.852144	0.697676	0.527292	0.367879

Therefore, the value of $\int_{0}^{1} e^{-x^{2}} d x$ using composite trapezoidal rule is

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x= & \frac{0.2}{2}[1+2(0.960789+0.852144+0.697676+0.527292)+0.367879] \\
& =0.7443681
\end{aligned}
$$

Q.N.4) Solve the following system of algebraic linear equation using Jacobi or Gauss-seidal iterative method.

6x1-2x2+x3=11
$-2 x_{1}+7 x_{2}+2 x_{3}=5$
$\mathrm{X}_{1}+2 \mathrm{x}_{2}-5 \mathrm{x}_{3}=-1$
Solutions:

Rewriting the given equations, we get
$x_{1}=\frac{\left(11+2 x_{2}-x_{3}\right)}{6}$
$x_{2}=\frac{\left(5+2 x_{1}-2 x_{3}\right)}{7}$
$x_{3}=\frac{\left(1+x_{1}-2 x_{2}\right)}{5}$
If the initial approximation is $x_{1}^{(0)}=x_{2}^{(0)}=x_{3}^{(0)}=0$ then from equation (i), (ii) and (iii), we get the first approximations as:
$x_{1}^{(1)}=\frac{11}{6}$
$x_{2}^{(1)}=\frac{5}{7}$
$x_{3}^{(1)}=\frac{1}{5}$
Now, for the second approximation, we have
$x_{1}^{(2)}=\frac{\left(11+2 \times \frac{5}{7}-\frac{1}{5}\right)}{6}=2.04$
$x_{2}^{(2)}=\frac{\left(5+2 \times \frac{11}{6}-2 \times \frac{1}{5}\right)}{7}=1.18$
$x_{3}^{(2)}=\frac{\left(1+\frac{11}{6}+2 \times \frac{5}{7}\right)}{5}=0.85$
Now, for the third approximation, we have
$x_{1}^{(3)}=\frac{(11+2 \times 1.18-0.85)}{6}=2.09$
$x_{2}^{(3)}=\frac{(5+2 \times 2.04-2 \times 0.85)}{7}=1.05$
$x_{3}^{(3)}=\frac{(1+2.04+2 \times 1.18)}{5}=1.08$
Continuing the same way we get the following approximations:
$x_{1}^{(4)}=2.003 ; x_{2}^{(4)}=1.003 ; x_{3}^{(4)}=1.038$
$x_{1}^{(5)}=1.995 ; x_{2}^{(5)}=1.138 ; x_{3}^{(5)}=1.002$
$x_{1}^{(6)}=2.046 ; \quad x_{2}^{(6)}=1.141 ; x_{3}^{(6)}=1.054$
$x_{1}^{(7)}=2.038 ; x_{2}^{(7)}=1.148 ; x_{3}^{(7)}=1.066$
$x_{1}^{(8)}=2.038 ; \quad x_{2}^{(8)}=1.144 ; x_{3}^{(8)}=1.067$
$x_{1}^{(9)}=2.037 ; x_{2}^{(9)}=1.144 ; x_{3}^{(9)}=1.065$
We continue this process till we reach the required level of accuracy.
Q.N. 5) Write an algorithm \& computer program to fit a curve $y=a x^{2}+b x+c$ for given sets of $\left(x_{1}, y_{1}, g, 0=1, \ldots x\right)$ values by least square method.

Let $\left(x_{i}, y_{i}\right), i=1,2,3, \ldots, n$ be a given set of n pairs of data points and let $y=f(x)$ be the curve that is fitted to this data. At $x=x_{i}$, the given value of the ordinate is y_{i} and the corresponding value on the fitting curve is $f\left(x_{i}\right)$. Then the error of approximating at $x=x_{i}$ is

$$
e_{i}=y_{i}-f\left(x_{i}\right)
$$

Let

$$
S=\left(y_{1}-f\left(x_{1}\right)\right)^{2}+\left(y_{2}-f\left(x_{2}\right)\right)^{2}+\cdots+\left(y_{n}-f\left(x_{n}\right)\right)^{2}=e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}=\sum_{i=1}^{n} e_{i}^{2}
$$

Then the method of least squares approximation consists of finding an expression $y=f(x)$ such that the sum of the squares of the errors is minimized. i.e. S is minimum.

Algorithm:

1. Input:

Set of n data pairs $\left(x_{i}, y_{i}\right), i=1,2,3, \ldots, n$
2. Process:

SET sum $x=0$, sum $y=0$, sum $x_{2}=0$, sum $x y=0$
FOR $i=1$ TO n
$\left\{\quad\right.$ SET $\operatorname{sum} x=\operatorname{sum} x+x_{i}$
SET sum $y=\operatorname{sum} y+y_{i}$
SET $\operatorname{sum} x_{2}=\operatorname{sum} x_{2}+x_{i}^{2}$
SET sum $x y=\operatorname{sum} x y+x_{i} y_{i}$
\}
SET $b=\frac{n \times \operatorname{sum} x y-\operatorname{sum} x \times \operatorname{sum} y}{n \times \operatorname{sum} x_{2}-\operatorname{sum} x \times \operatorname{sum} x}$
SET $a=\frac{\operatorname{sum} y-b \times \operatorname{sum} x}{n}$
3. Output:

The straight line of the equation $y=a+b x$

```
Program:
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
int main(int argc, char **argv)
{ double *x, *y;
    double SUMx, SUMy, SUMxy, SUMxx, SUMres, res, slope, y_intercept, y_estimate;
    int i, n;
    FILE *infile;
    infile = fopen("xydata", "r");
    if (infile == NULL)
    printf("error opening file\n");
    fscanf (infile, "%d", &n);
    x = (double *) malloc (n*sizeof(double));
    y = (double *) malloc (n*sizeof(double));
    SUMx = 0;
    SUMy = 0;
    SUMxy = 0;
    SUMxx = 0;
    for (i=0; i<n; i++)
    { fscanf (infile, "%lf %lf", &x[i], &y[i]);
        SUMx = SUMx + x[i];
        SUMy = SUMy + y[i];
        SUMxy = SUMxy + x[i]*y[i];
```

```
    SUMxx = SUMxx + x[i]*x[i];
\}
slope \(=(\) SUMx *SUMy \(-\mathrm{n} *\) SUMxy \() /(\) SUMx*SUMx \(-\mathrm{n} *\) SUMxx \()\);
y_intercept \(=(\) SUMy - slope*SUMx \() / n\);
printf ("\n");
printf ("The linear equation that best fits the given data: \(\ln\) ");
printf ("y = \%6.2lfx + \%6.2lf \(\backslash n "\) ", slope, y_intercept);
printf ("
```

\qquad

``` ln");
printf ("Original (x,y) Estimated y Residual\n");
printf ("
``` \(\qquad\)
``` ln");
SUMres \(=0\);
for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
\{ \(\quad\) y_estimate \(=\) slope \(^{*}\) x[i] + y_intercept;
res \(=y[i]-y \_\)estimate;
SUMres \(=\) SUMres + res*res;
printf ("(\%6.2lf \%6.2lf) \(\% 6.21 \mathrm{~F}\) \%6.2lfln", x[i], y[i], y_estimate, res);
\}
printf("-
``` \(\qquad\)
``` ln");
printf("Residual sum = \%6.2lf \(\backslash n "\), SUMres);
return 1;
```

\}
Q.N.6)Derive a difference equation to represent Poisson's equation. Solve the Poisson's equation $\nabla^{2} f=2 x^{2} y^{2}$ over the square to main $0 \leq x \leq 3,0 \leq y \leq 3$ with $f=0$ on the boundary and $h=1$.

Difference equation to represent Poisson's equation:

Let $u=u(x, y)$ be a function of two independent variables $x \& y$. Then by Taylor's formula:

$$
\begin{equation*}
u(x+h, y)=u(x, y)+h u_{x}(x, y)+\frac{h^{2}}{2!} u_{x x}(x, y)+\frac{h^{3}}{3!} u_{x x x}(x, y)+\cdots \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& u(x-h, y)=u(x, y)-h u_{x}(x, y)+\frac{h^{2}}{2!} u_{x x}(x, y)-\frac{h^{3}}{3!} u_{x x x}(x, y)+\cdots \tag{ii}\\
& u(x, y+k)=u(x, y)+k u_{y}(x, y)+\frac{k^{2}}{2!} u_{y y}(x, y)+\frac{k^{3}}{3!} u_{y y y}(x, y)+\cdots \tag{iii}\\
& u(x, y-k)=u(x, y)-k u_{y}(x, y)+\frac{k^{2}}{2!} u_{y y}(x, y)-\frac{k^{3}}{3!} u_{y y y}(x, y)+\cdots \tag{iv}
\end{align*}
$$

Adding equations (i) \& (ii) and ignoring the terms containing h^{4} and higher powers, we get

$$
\begin{array}{r}
u(x+h, y)+u(x-h, y)=2 u(x, y)+h^{2} u_{x x}(x, y) \\
\text { or, } u_{x x}(x, y)=\frac{1}{h^{2}}[u(x+h, y)-2 u(x, y)+u(x-h, y)] \ldots \tag{A}
\end{array}
$$

Adding equations (iii) \& (iv) and ignoring the terms containing k^{4} and higher powers, we get

$$
\begin{array}{r}
u(x, y+k)+u(x, y-k)=2 u(x, y)+k^{2} u_{y y}(x, y) \\
o r, u_{y y}(x, y)=\frac{1}{k^{2}}[u(x, y+k)-2 u(x, y)+u(x, y-k)] \ldots \tag{B}
\end{array}
$$

Now if $u_{x x}+u_{y y}=g(x, y)$ is the given Poisson's equation, then from equation (A) \& (B) choosing $h=k$ we have,

$$
u(x+h, y)+u(x, y+h)+u(x-h, y)+u(x, y-h)-4 u(x, y)=h^{2} g(x, y)
$$

which is the difference equation for Poisson's equation.

Numerical:

The domain is divided as follows with $f=0$ at the boundary

Now, from the difference equation for the Poisson's equation, we have

$$
\begin{align*}
& 0+0+f_{2}+f_{3}-4 f_{1}=1^{2} \times 2 \times 1^{2} \times 2^{2} \\
& \text { or, } f_{2}+f_{3}-4 f_{1}=8 \ldots \ldots \ldots(i) \tag{i}
\end{align*}
$$

$$
\begin{align*}
& 0+0+f_{1}+f_{4}-4 f_{2}=1^{2} \times 2 \times 2^{2} \times 2^{2} \\
& \text { or, } f_{1}+f_{4}-4 f_{2}=32 \ldots \ldots \ldots(i i) \tag{ii}\\
& 0+0+f_{1}+f_{4}-4 f_{3}=1^{2} \times 2 \times 1 \times 1 \\
& \text { or, } f_{1}+f_{4}-4 f_{3}=2 \ldots \ldots \ldots(i i i) \tag{iii}\\
& \\
& 0+0+f_{2}+f_{3}-4 f_{4}=1^{2} \times 2 \times 2^{2} \times 1 \tag{iv}\\
& \text { or, } f_{2}+f_{3}-4 f_{4}=8 \ldots \ldots \ldots \text { (iv) }
\end{align*}
$$

Solving these equations, we get
$f_{1}=-\frac{11}{2}$
$f_{2}=-\frac{43}{4}$
$f_{3}=-\frac{13}{4}$
$f_{4}=-\frac{11}{2}$
Q.N.7) Define Order Differential Equation of the first order. What do you mean by initial value problem? Find by Taylor's series method, the values of \boldsymbol{y} at $\boldsymbol{x}=0.1 \& x=0.2$ to fine places of decimal form.
$\frac{d y}{d x}=x^{2} y-1 ; y(0)=1$

An order differential equation (ODE) is an equation that contains one or several derivatives of an unknown function $y(x)$ having one independent variable x. Solving a differential equation means to find that unknown function $y(x)$ which satisfies the given differential equation. In that case, $y(x)$ is called the solution of the given differential equation. The order of differential equation is the order of the highest derivative that appears in the equation. $\frac{d y}{d x}=3 x^{2}+y$ is a $1^{\text {st }}$ order differential equation.

A general solution of a differential equation contains as many constants as the order of the differential equation. To eliminate more constants, we need a conditions on the solution of differential equation. When all the conditions are specified at a particular value of the independent variable x, then the problem is called an initial value problem and the conditions are called initial conditions.

Numerical:
The Taylor's series expansion of $y(x)$ at $x=0$ is given by:
$y(x)=y(0)+y^{\prime}(0)(x-0)+\frac{y^{\prime \prime}(0)(x-0)^{2}}{2!}+\frac{y^{\prime \prime \prime}(0)(x-0)^{3}}{3!}+\frac{y^{\prime \prime \prime \prime}(0)(x-0)^{4}}{4!}+\cdots$
or, $y(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0) x^{2}}{2}+\frac{y^{\prime \prime \prime}(0) x^{3}}{3!}+\frac{y^{\prime \prime \prime \prime}(0) x^{4}}{4!}+\cdots$
Now,
$y(0)=1$
$y^{\prime}(0)=0^{2} \times 1-1=-1$
$y^{\prime \prime}(x)=x^{2} y^{\prime}+2 x y \Rightarrow y^{\prime \prime}(0)=0^{2} y^{\prime}(0)+2 \times 0 \times y^{\prime}(0)=0$
$y^{\prime \prime \prime}(x)=x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y \Rightarrow y^{\prime \prime \prime}(0)=0+2 y(0)=2 \times 1=2$
$y^{\prime \prime \prime \prime}(x)=x^{2} y^{\prime \prime \prime}+6 x y^{\prime \prime}+6 y^{\prime} \Rightarrow y^{\prime \prime \prime \prime}(0)=0+0+6 y^{\prime}(0)=6 \times(-1)=-6$
Therefore, from equation (i), ignoring the terms containing x^{5} and higher power, we get
$y(x)=1-x+\frac{0}{2} x^{2}+\frac{2}{6} x^{3}-\frac{6}{24} x^{4}=1-x+\frac{x^{3}}{3}-\frac{x^{4}}{4}$
When $x=0.1$, then
$y(0.1)=1-0.1+\frac{0.1^{3}}{3}-\frac{0.1^{4}}{4}=0.9+0.00033-0.000025=0.900305$
When $x=0.2$, then
$y(0.2)=1-0.2+\frac{0.2^{3}}{3}-\frac{0.2^{4}}{4}=0.8+0.002667-0.0004=0.802267$

