
Lab 5
Threads

As with processes, threads appears to run concurrently; the Linux kernel schedules them
asynchronously, interrupting each thread time to time to give others a chance to execute.
Threads exists within a process. GNU/Linux implements the POSIX standard thread API
(pthreads). All thread functions and data types are declared in the header file
<pthread.h>. The pthread functions are not included in the standard C library; they are in
libpthread, therefore -lpthread should add when linking program.

5.1 Thread Creation
 Each thread have their own thread ID as process, thread ID referred by type
pthread_t.
The pthread_create function create new threads. It has following formate.

 int pthread_create (pthread_t *thread, pthread_attr_t *attr, void *(*start_routine)
 (void*), void *arg);

 The pthread_exit function terminates the thread.

thread_exit(void *return_val);
 The pthread_join function waits other process for termination – equivalent of wait.
 int pthread_join(pthread_t th, void **thread_return);

 Ex 5.1: Thread Creation (threadc.c)

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
struct param
 {

char ch; /* The character to print*/
int count; /* number of times to print it */

 };

void * printc(void * parameter) /* prints number of character in stderr*/
 {

struct param * p = (struct param *) parameter;
int i;

for(i=0;i<p->count; ++i)
fputc(p->ch, stderr);

return NULL;
 }

int main()
 {

pthread_t thread1_id;
pthread_t thread2_id;
struct param thread1_args;
struct param thread2_args;

thread1_args.ch = 'T'; /* new thread to print 30000 Ts*/
thread2_args.count = 30000;
pthread_create(&thread1_id, NULL, &printc, &thread1_args);

thread2_args.ch ='t'; /* new thread to print 20000 ts */
thread2_args.count = 20000;
pthread_create(&thread2_id, NULL, &printc, &thread2_args);

pthread_join(thread1_id, NULL) /* wait first thread to finish*/
pthread_join(thread_id, NULL) /*wait second thread to finish*/

return 0;
 }

Warning! : Run this program as : gcc -o threadc threadc.c -lpthread

Assignment #L5
1. Run the program Ex 5.1 and analyze the output; what changes will in your out put

when you remove last two line (pthread_join), if any changes, give reason.
2. Write a program using threads that prints sum of numbers up to given positive number

n.

