
Lab 2

Interaction With the Execution Environment

When the operating system executes a program, it automatically provides certain facilities
that help the program communicate with the operating system and the user. We consider
the the environment in which the programs, how they can use that environment to gain
information about the operating system conditions, and how users of the program can
alter their behavior.

The Argument list

We run a program from a shell prompt by typing the name of the program. Optionally,
we can supply the additional information to the program by typing one or more words
after the program name, separated by spaces. These are called the command line
arguments or argument list.

Ex.2.1. The following program demonstrates how to use argc and argv.

arglist.c
#include < stdio.h>

int main (int argc, char* argv[])
{

printf (“ The name of this program is: '%s'. \n”, argv[0]+2);
printf (“ This program is invoked with %d arguments \n”, argc – 1);

if (argc>1)
{

int i;
printf(“ The arguments are :\n”);
for (i = 1; i < argc; ++i)

printf(“%s \n”, argv[i]);
}

return 0;
}

 1

The Environment
Linux provides each running program with an environment. The environment is a
collection of variable/value pairs. Both environment variable names and their values are
character strings. By convention, environment variable names are spelled in all capital
letters.
Examples:
USER: contains user name.
HOME: contains the path to the home directory.
PATH: contains the colon-separated list of directories through which Linux search for the
command.

'printenv'- To print the current environment variables .

Ex. 2.2. Printing the environment variables.

showenv.c
#include<stdio.h>
extern char **environ;
int main()
{

char **env = environ;
while(*env)

{
printf(“ %s \n”, *env);
env++;
}

return 0;
}

Note: After saving the above program, issue the following command to execute as
command.

chmod a+x <filename>
PATH=$PATH:.
$ <filename>

Assignment #L2:
1. Run the above programs at lest three times (Ex. 2.1 and Ex. 2.2) and analyze
 the output?
2. Write the program which create the new file – makefile (equivalent to 'touch'
 command).

 2

