

Kathford College of Engineering and Management

Balkumari, Lalitpur

Affiliated to Tribhuvan University

Lecture Notes
On

Object Oriented Programming C++

Bachelor’s Degree in Computer and Electronic Engineering

Prepared by- Prem Raj Bhatta
[M.Sc. IT]

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

1. Introduction to Object Oriented Programming

Language Paradigms:

– Imperatives – Procedural Programming : C, Pascal, COBOL, FORTRAN etc.
– Applicative – Functional Programming – LISP, ML.
– Rule-based – Logic Programming :– PROLOG
– Object-Oriented Programming: – C++, JAVA, SMALLTALK

Our focus here is on procedural and Object oriented Programming approach.

Procedural programming Language

In procedural programming programs are organized in the form of subroutines. The subroutines
do not let code duplication. This technique is only suitable for medium sized software
applications. Conventional programming, using HLL e.g. COBOL, FORTRAN, C etc is
commonly known as procedural programming. A program in Procedural Language is a list of
instructions each statement in the language tells the computer to do something involving –
reading, calculating, writing output. A number of functions are written to accomplish such tasks.
Program become larger, it is broken into smaller units – functions. The primary focus of
procedural oriented programming is on functions rather than data.

Procedure oriented programming basically consists of writing a list of instructions for computer
to follow, and organize these instructions into groups known as functions.

In procedural approach,

• A program is a list of instruction.
• When program in PL become larger, they are divided into functions(subroutines, sub-

programs, procedures).
• Functions are grouped into modules.
•

Dividing the program into functions and modules is a task in structured programming. In structured
programming there are certain structures as
 Sequences control
 Selection Structures
 Iteration

Fun 1 Fun 3
Fun 2

Fun 7 Fun 6

Fun 4 Fun 5

Fun 8

 Main Program
 Functions
 Modules

A pictorial views

 By- Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com

1. Introduction to OOP

– In a multi function program, two types of date are used: local and global.
– Data items are placed as global so that they can be accessed by all the functions freely.
– Each function may have their own data also called as local data.

Global Data

 Local data

Function1

 Local data

Function 2

Global Data

Characteristics of Procedural approach:

– Emphasis is on doing things, (Algorithms)
– Large programs are divided into smaller program – function
– Most of functions share global data.
– Data more openly around system from function to function.
– Function transform data from one form to another
– Employs top-down approach for program design

Limitation of Procedural language

– In large program, it is difficult to identify which data is used for which function.
– Global variable overcome the local variable.
– To revise an external data structure, all functions that access the data should also be revised.
– Maintaining and enhancing program code is still difficult because of global data.
– Focus on functions rather than data.
– It does not model real world problem very well. Since functions are action oriented and do

not really correspond to the elements of problem.

The Object Oriented Approach:

The fundamental idea behind object-oriented programming is to combine or encapsulate both data
(or instance variables) and functions (or methods) that operate on that data into a single unit. This
unit is called an object. The data is hidden, so it is safe from accidental alteration. An object’s
functions typically provide the only way to access its data. In order to access the data in an object, we
should know exactly what functions interact with it. No other functions can access the data. Hence
OOP focuses on data portion rather than the process of solving the problem.

An object-oriented program typically consists of a number of objects, which communicate with
each other by calling one another’s functions. This is called sending a message to the object. This
kind of relation is provided with the help of communication between two objects and this
communication is done through information called message.

In addition, object-oriented programming supports encapsulation, abstraction, inheritance, and
polymorphism to write programs efficiently. Examples of object-oriented languages include Simula,
Smalltalk, C++, Python, C#, Visual Basic .NET and Java etc.

In Object Oriented programming

– Emphasis is on data rather than procedures.
– Programs are divided into objects.
– Data structures are designed such that they characterize the objects .

 By- Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

– Functions & data are tied together in the data structures so that data abstraction is introduced
in addition to procedural abstraction.

– Data is hidden & can’t be accessed by external functions.
– Object can communicate with each other through function.
– New data & functions can be easily added.
– Follows Bottom up approach.

Object A Object B

 Data

 Data

Fuction Fuction

 Object C

 Data

Fuction

Features of Object Oriented Language:

1. Objects: Objects are the entities in an object oriented system through which we perceive the
world around us. We naturally see our environment as being composed of things which have
recognizable identities & behavior. The entities are then represented as objects in the
program. They may represent a person, a place, a bank account, or any item that the program
must handle. For example Automobiles are objects as they have size, weight, color etc as
attributes (ie data) and starting, pressing the brake, turning the wheel, pressing accelerator
pedal etc as operation (that is functions).

.

Object: Student

Data
 Name
 Date of birth
 Marks

Data
 Account number
 Account Type

Name

Object: Account

 By- Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

Example of objects:
Physical Objects:

– Automobiles in traffic flow. simulation
– Countries in Economic model
– Air craft in traffic – control system .

Computer user environment objects.
-Window, menus, icons etc

Data storage constructs.
 -Stacks, Trees etc

Human entities:
-employees, student, teacher etc.

Geometric objects:
-point, line, Triangle etc.

Objects mainly serve the following purposes:
• Understanding the real world and a practical base for designers
• Decomposition of a problem into objects depends on the nature of problem.

2. Classes : A class is a collection of objects of similar type. For example manager, peon,

secretary, clerk are member of the class employee and class vehicle includes objects car, bus,
etc.
It defines a data type, much like a struct in C programming language and built in data
type(int char, float etc). It specifies what data and functions will be included in objects of that
class. Defining class doesn’t create an object but class is the description of object’s attributes
and behaviors. Person Class : Attributes: Name, Age, Sex etc.
 Behaviors: Speak(), Listen(), Walk()
Vehicle Class: Attributes: Name, model, color, height etc
 Behaviors: Start(), Stop(), Accelerate() etc.

When class is defined, objects are created as

 <classname> <objectname> ;

If employee has been defined as a class, then the statement
 employee manager;

Will create an object manager belonging to the class employee.

Each class describes a possibly infinite set of individual objects, each object is said to be an instance
of its class and each instance of the class has its own value for each attribute but shares the attribute
name and operations with other instances of the class. The following points gives the idea of class:

• A class is a template that unites data and operations.
• A class is an abstraction of the real world entities with similar properties.
• Ideally, the class is an implementation of abstract data type.

3. Encapsulation and Data Abstraction:
 The wrapping up of data and function into a single unit is called encapsulation. Encapsulation
is most striking feature of a class. The data is not accessible from outside of class. Only member
function can access data on that class. The insulation of data from direct access by the program is
called data hiding. That is data can be hidden making them private so that it is safe from accidental
alteration.

 By- Prem Raj Bhatta 4

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

Abstraction is representing essential features of an object without including the background
details or explanation. It focuses the outside view of an object, separating its essential behavior from
its implementation.

The class is a construct in C++ for creating user-defined data types called Abstract Data
Types (ADT)

4. Inheritance:

 Inheritance is the process by which objects of one class acquire the characteristics of object
of another class. In OOP, the concept of inheritance provides the idea of reusability. We can use
additional features to an existing class without modifying it. This is possible by deriving a new class
(derived class) from the existing one (base class).This process of deriving a new class from the
existing base class is called inheritance .
 It supports the concept of hierarchical classification. It allows the extension and reuse of existing
code without having to rewrite the code.

Parent Base class or super class

Parent Features

 Derived or sub class Parent features

Child features

Child

 Vehicle

Two wheeler Four wheeler

bicycle bike heavy light

Car

Example of Inheritance class hierarchy

temp

 By- Prem Raj Bhatta 5

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

Multiple Inheritance: If derived class inherits the features of more than one base class it is called
multiple inheritance.

Class B Class C

Class D(Features of
Classes A,B,C

Features of D

Child Class D

Parent Classes A,B,C Class A

Multiple Inheritance
5. Polymorphism:
Polymorphism means “having many forms”. The polymorphism allows different objects to respond
to the same message in different ways, the response specific to the type of object. Polymorphism is
important when object oriented programs dynamically creating and destroying the objects in runtime.
Example of polymorphism in OOP is operator overloading, function overloading.
For example operator symbol ‘+’ is used for arithmetic operation between two numbers, however by
overloading (means given additional job) it can be used over Complex Object like currency that has
Rs and Paisa as its attributes, complex number that has real part and imaginary part as attributes. By
overloading same operator ‘+’ can be used for different purpose like concatenation of strings.

Circle Object
draw(circle)

Box Object
draw(box)

Triangle Object
draw(Triangle)

Class Shape
draw()

Dynamic Biding: Binding refers to the linking a function call to the code to be executed in response
to the call. Dynamic binding means that the code associated with a given function call is not known
until the time of the call at run time. It is associated with polymorphism & inheritance.

6. Message Passing: An Object-Oriented program consists of set of objects that communicate with
each other. Object communicates with each other by sending and receiving message (information). A
message for an object is a request for execution of a procedure and therefore will invoke a function or
procedure in receiving object that generate the desired result. Message passing involves specifying
the name of the object name of the function (message) and the information to be sent.

e.g employee . salary (name) ;

 Object message information

 By- Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

Advantages of OOPs

Object oriented programming contributes greater programmer productivity, better quality of software
and lesser maintenance cost. The main advantages are:

• Making the use of inheritance, redundant code is eliminated and the existing class is extended.
• Through data hiding, programmer can build secure programs that cannot be invaded by code

in other pats of the program.
• It is possible to have multiple instances of an object to co-exist without any interference.
• System can be easily upgraded from small to large systems.
• Software complexity can be easily managed.
• Message passing technique for communication between objects makes the interface

description with external system much simpler.
• Aids trapping in an existing pattern of human thought into programming.
• Code reusability is much easier than conventional programming languages.

Disadvantages of OOPs

• Compiler and runtime overhead. Object oriented program required greater processing
overhead – demands more resources.

• An object’s natural environment is in RAM as a dynamic entity but traditional data storage in
files or databases

• Re-orientation of software developer to object-oriented thinking.
• Requires the mastery in software engineering and programming methodology.
• Benefits only in long run while managing large software projects.
• The message passing between many objects in a complex application can be difficult to trace

& debug.

Object oriented Languages:
 The language should support several of OOPs concepts to claim that they are Object-
Oriented. Depending upon the features they support, they can be classified as

1. Object–Based Languages
2. Object-Oriented Languages

Object Based Language: Supports encapsulation & object identity without supporting the important
features of OOP languages such as Inheritance and Dynamic Bindings. Major features are

– Data Encapsulation
– Data hiding & access mechanisms
– Automatic initialization & clear-up of objects
– Operator overloading
– Don’t support inheritance & Dynamic binding . e.g Ada.

Object-Based Language : Encapsulation + Object Identity
Object – Oriented language : Incorporates all features of object-based language plus inheritance and
dynamic bindings

Object-Oriented L : Object based feature + inheritance + dynamic bindings
 e.g SMALLTALK , C++ , JAVA,EIFFEL etc.

 By- Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

Application of OOP

 Applications of OOP are beginning to gain importance in many areas.

– The most popular application of OOP, up to now. Has been area of user interface design such
as Windows .

– Real Business systems are often much more complex attributes & behaviors .
– OOP can simplify such complex problem. The areas of application of OOP include
– Real time systems
– Simulation & modeling
– Object-Oriented databases
– Hypertext, hypermedia
– AI & expert system
– Neural Networks & parallel programming
– Decision support & Office automation system
– CAM/CAD systems .
– Computer Based training and Educational Systems

Object-Oriented Programming Languages :

 SmallTalk :
 – Developed by Alen Kay at Xerox Palo Alto Research center (PARC) in 1970’s

– 100% OO Language
– The syntax is very unusual and this leads to learning difficulties for programmers who are

used to conventional language syntax .
– Language of this type allocate memory space for object on the heap and dynamic garbage

collector required .

Eiffel :

- Eiffel was designed by a Frenchman named Bertrand Meyer in the late 1980’s .
– Syntax is very elegant & simple, fewer reserved world than Pascal .
– Compiler normally generates “C source which is than compiled using c compiler which can

lead long compile time.
– All Eiffel object are created on the heap storage
– Pure object oriented
– Not very popular as a language for mainstream application development .

Java

– Designed by SUN(Stanford University Net) Microsystems, released in 1996 and is a pure O-
O language.

– Syntax is taken from C++ but many differences .
– All object are represented by references and there is are pointer type.
– The compiler generates platform independent byte code which is executed at run time by

interpreter.
– A very large library of classes for creating event driven GUI is included with JAVA compiler
– JAVA is a logical successor to C++ can also be called as C++--++(C-Plus-Plus-Minus-Minus-

Plus-Plus i.e. remove some difficult to use features of C++ and Add some good features)

 By- Prem Raj Bhatta 8

Downloaded from: http://www.bsccsit.com/

1. Introduction to OOP

C++
– Developed by Bjarne Stroustrup at Bell Lab in New jersey in early 1980 s as extension of C
– Employs the basic syntax of the earlier C language which was developed in Bell Lab by

Kernigan & Ritchie.
– One of most popular language used for s/w development .
– By default, c++ creates objects on the systems stack in the same way as the fundamental data

type.
–

Unlike Java, SmallTalk and Eiffel, C++ is not pure O-O language. i.e it can be written in a
conventional ‘C’.

 By- Prem Raj Bhatta 9

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

2. Migrating from C to C++

History of C++
C++ is an object oriented programming language. It was called “C with class”. C++ was
developed by Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill, New Jersey,
USA, in the early eighties. Stroustrup, an admirer of Simula67 and a strong supporter of
C, wanted to combine the best of both languages and create a more powerful language
that could support object oriented programming features and still remain power of C. The
result was C++. The major addition was class to original C language, so it was also called
“C with classes”. Then in 1993, the name was changed to C++. The increment operator
++ to C suggest an enhancement in C language.
C++ can be regarded as superset of C (or C is subset of C++). Almost all C programs are
also true in C++ programs.

C++ program Construction.
Before looking at how to write C++ programs consider the following simple example
program.
// Sample program
// Reads values for the length and width of a rectangle
// and returns the perimeter and area of the rectangle.

#include <iostream.h> //for cout and cin
#include <conio.h> //for getch()
void main()
{
 int length, width;
 int perimeter, area; // declarations
 cout << "Length = "; // prompt user
 cin >> length; // enter length
 cout << "Width = "; // prompt user
 cin >> width; // input width
 perimeter = 2*(length + width); // compute perimeter
 area = length*width; // compute area
 cout << endl
 << "Perimeter is " << perimeter;
 cout << endl
 << "Area is " << area
 << endl; // output results
 getch();
} // end of main program

The following points should be noted in the above program:

1. Single line comment (// ………….)
 Any text from the symbols // until the end of the line is ignored by the
compiler. This facility allows the programmer to insert Comments in the
program. Any program that is not very simple should also have further comments

 By-Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

indicating the major steps carried out and explaining any particularly complex
piece of programming. This is essential if the program has to be extended or
corrected at a later date. This is a kind of documentation. Also C comment type
/*--------------*/ is also a valid comment type in C++.

2. The line
 #include <iostream.h>

must start in column one. It causes the compiler to include the text of the named
file (in this case iostream.h) in the program at this point. The file iostream.h is a
system supplied file which has definitions in it which are required if the program
is going to use stream input or output. All programs will include this file. This
statement is a preprocessor directive -- that is it gives information to the
compiler but does not cause any executable code to be produced.

3. The actual program consists of the function main() which commences at the line
void main().
All programs must have a function main(). Note that the opening brace ({) marks
the beginning of the body of the function, while the closing brace (}) indicates the
end of the body of the function. The word void indicates that main() does not return
a value. Running the program consists of obeying the statements in the body of
the function main().

4. The body of the function main contains the actual code which is executed by the
computer and is enclosed, as noted above, in braces {}.

5. Every statement which instructs the computer to do something is terminated by a
semi-colon. Symbols such as main(), { } etc. are not instructions to do something
and hence are not followed by a semi-colon. Preprocessor directives are
instruction to the compiler itself but program statements are instruction to the
computer.

6. Sequences of characters enclosed in double quotes are literal strings. Thus
instructions such as
cout << "Length = "
send the quoted characters to the output stream cout. The special identifier endl
when sent to an output stream will cause a newline to be taken on output.

7. All variables that are used in a program must be declared and given a type. In this
case all the variables are of type int, i.e. whole numbers. Thus the statement
int length, width;
declares to the compiler that integer variables length and width are going to be used
by the program. The compiler reserves space in memory for these variables.

Variable Definition at the point of use.
In C, local variables can only be defined at the top of a function, or at the
beginning of a nested block. In C++, local variables can be created at any position
in the code, even between statements. Also local variables can be defined in some
statements, just before their usage.

//to find sum of first natural number to display for loop
#include<iostream.h>
#include<conio.h>
void main()
{

 By-Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

 int n;
 cout<<"\nEnter Number";
 cin>>n;
 int sum=0;

 for(int i=0;i<=n;i++)
 sum+=i;
 cout<<"Sum of first n natural number:"<<sum;
 getch();
 }

8. Values can be given to variables by the assignment statement, e.g. the statement

area = length*width;
evaluates the expression on the right-hand side of the equals sign using the current
values of length and width and assigns the resulting value to the variable area.

9. Layout of the program is quite arbitrary, i.e. new lines, spaces etc. can be inserted
wherever desired and will be ignored by the compiler. The prime aim of
additional spaces, new lines, etc. is to make the program more readable. However
superfluous spaces or new lines must not be inserted in words like main, cout, in
variable names or in strings.

Input and Output:
C++ Supports rich set of functions for performing input and output operations. The
syntax using these I/O functions is totally consistent of the device with I/O operations are
performed. C++’s new features for handling I/O operations are called streams. Streams
are abstractions that refer to data flow. Streams in C++ are :

• Output Stream
• Input Stream.

Output Stream:
 The output stream allows us to write operations on output devices such as screen, disk
etc. Output on the standard stream is performed using the cout object. C++ uses the bit-
wise-left-shift operator for performing console output operation. The syntax for the
standard output stream operation is as follows:
cout<<variable;
The word cout is followed by the symbol << , called the insertion or put to operator , and
then with the items (variables, constants, expressions) that are to be output. Variables can
e of any basic data types. The us of cout to perform an output operation is as shown :

Insertion or put-to operator

Variable of standard or user defined data type

Object cout

cout << variable;

 By-Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

cout <<Hello
“Hello”

Figure: output with cout
 The following are example of stream output operations:
1. cout << “hello world”;
2. int age;
 cout<< age;
3. float weight;
 cout<< weight;
etc.

More than one item can be displayed using a single cout output stream object. Such out
put operations in C++ are called cascaded output operations. For example
 cout<<”Age is: “<<age<<”years”;
This cout object will display all the items from left to right. If value of age is 30 then
this stream prints
 Age is : 30 years

C++ does not restricts the maximum number of items to output. The complete syntax of
the standard output streams operation is as follows:
cout<<variable1<<vaariable2<<…………<<variableN;

The object cout must be associated with at least one argument. Like printf in C, A
constant value can be sent as an argument to the cout object.
e.g.
cout<<’A’; //prints a constant character A
cout<<10.99; //Prints constant 10.99
cout<<” “; //prints blanks
cout<<”\n”, //prints new line

Input Streams:

The input stream allows us to perform read operations with input devices such as
keyboard, disk etc. Input from the standard stream is performed using the cin object. C++
uses the bit-wise right-shift operator for performing console input operation. The syntax
for the standard output stream operation is as follows:
 cin<<variable;
 The word cin is followed by the symbol >> and then with variable, into which
input data is to be stored. The use of cin to perform an input operation is as shown :

Extraction or get operator

Variable of standard or user defined data type

Object cin

cin>> variable;
 4By-Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

cin >>Hello

variable;

 Figure: Input with cin
Following Examples show the stream input operations;

1. int amount;
cin>>amount;

2. float weight;
cin>>weight;

3. char name[20];
cin>>name; etc

 Input of more than one item can also be performed using the cin input stream
object. Such input operation in C++ are called cascaded input operations. For example,
reading the name of a person his address, age can be performed by the cin as:
cin>> name>>address>>age;
 The cin object reads the items from left to right. The complete syntax of the
standard input streams operations is as follows:
 cin>>var1>>var2>>var3>>………………>>varN;
 e.g. cin>>i>>j>>k>>l;

The following are two important points to be noted about the stream operations.
• Streams do not require explicit data type specification in I/O statement.
• Streams do not require explicit address operator prior to the variable in the

input statement.
 In C printf and scanf functions, format strings (%d,%s,%c etc) and address
operator (&) are necessary but in cin stream format specification is not necessary and in
the cout stream format specification is optional. Format-free I/O is special features of
C++ which make I/O operation comfortable.

Note: The operator << and >> are the bit-wise left-shift and right-shift operators that are
used in C and C++. In C++ the operator can be overloaded i.e. same operator can perform
different activities depending on the context.

Manipulators:
 Manipulators are instructions to the output stream that modify the output in various
ways. For example endl , setw etc.
 The endl Manipulator:
 The endl manipulator causes a linefeed to be inserted into the stream, so that
subsequent text is displayed on the next line. It has same effect as sending the ‘\n’
character but somewhat different. It is a manipulator that sends a newline to the stream

 By-Prem Raj Bhatta 5

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

and flushes the stream (puts out all pending characters that have been stored in the
internal stream buffer but not yet output). Unlike ‘\n’ it also causes the output buffer to be
flushed but this happens invisibly.
e.g.
cout << endl<< "Perimeter is " << perimeter;
 cout << endl << "Area is " << area << endl;

The setw Manupulator:
 To use setw manipulator the “iomanip.h” header file must be included. The
setw manipulator causes the number or string that follows it in the stream to be printed
within a field n characters wide , where n is the argument used with setw as stew(n).
The value is right justified within the field.
e.g.

//demonstrates setw manipulator
#include<iostream.h>
#include<iomanip.h>
void main()
{
 long pop1=5425678,pop2=47000;pop3=76890;
 cout<<setw(8)<<”LOCATION”<<setw(12)<< “POPULATION”<<endl
 <<setw(8)<< “Patan”<<setw(12)<<pop1<<endl
 <<setw(8)<< “Khotang” <<setw(12)<<pop2<<endl
 <<setw(8)<< “Butwal” <<setw(12) <<pop3<<endl;
}

The output of this program is:
LOCATION POPULATION
 Patan 5425678
 Khotang 47000
 Butwal 76890

 Manipulators come in two flavors: those that take and arguments and those that
don’t take arguments. Followings are the some important non-argument manipulators .
Table: No-argument Manipulators
Manipulators Purpose
Ws Turn on whitespace skipping on input
Dec convert to decimal
Oct Convert to octal
Hex convert to Hexadecimal
Endl insert newling and flush the output stream
Ends Insert null character to terminate an output string
Flush flush the output stream
Lock lock the file handle
Unlock Unlock the file handle

 By-Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

//demonstrates manipulators
#include<iostream.h>
#include<iomanip.h>
void main()
{
 long pop1=2425678;
 cout<<setw(8)<<"LOCATION"<<setw(12)<< "POPULATION"<<endl
 <<setw(8)<< "Patan"<<setw(12)<<hex<<pop1<<endl
 <<setw(8)<< "Khotang" <<setw(12)<<oct<<pop1<<endl
 <<setw(8)<< "Butwal" <<setw(12) <<dec<<pop1<<endl;
}
Output:
LOCATION POPULATION
 Patan 25034e
 Khotang 11201516
 Butwal 2425678
There are manipulators that take arguments for example setw(), setfill() setprecision() etc
e.g.
cout<<setw(12)<<setfill(64)<<”string”;
In this statement setw(12) describes the field width 12 and setfill(64) fills the blanks with
character specified with integer arguments. The output of this statement is :
 @@@@@@string where @ is the character corresponding to int 64
cout<<setprecision(5)<<12.456789;

 The output of this statement is : 12.456 i.e. setprecision() describes the no of
digits to be displayed.

Data Types:

Fundamental Data Types

Data type defines the amount of memory that will be used by a variable and the valid
range of values that a variable can represent. Both C and C++ compilers support all the
fundamental (also known as basic or built-in) data types. C++ defines five fundamental
data types: int, char, float, double, and void. The modifiers signed, unsigned, long, and
short may be applied to character and integer basic types except void. However, the
modifier long may also be applied to double. The following table shows the
memory required for all combinations of the basic data types and
modifiers and the valid range of values it can represent.

 By-Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

Data Type Memory
Required

Range of Values

char 1 byte (8
bits)

- 128 to 127 (- 27 to 27 – 1)

unsigned char 1 byte (8
bits)

0 to 255

signed char 1 byte (8
bits)

- 128 to 127 (- 27 to 27 – 1)

int 2 bytes (16
bits)

–32,768 to 32,767 (–215 to 215–1)

unsigned int
(unsigned)

2 bytes (16
bits)

0 to 65535

signed int
(signed)

2 bytes (16
bits)

–32,768 to 32,767 (–215 to 215–1)

short int
(short)

2 bytes (16
bits)

–32,768 to 32,767 (–215 to 215–1)

long int
(long)

4 bytes (32
bits)

–2,147,483,648 to 2,147,483, 647 (–231 to
231–1)

unsigned short
int
(unsigned
short)

2 bytes (16
bits)

0 to 65535

signed short
int
(signed short)

2 bytes (16
bits)

–32,768 to 32,767 (–215 to 215–1)

unsigned long
int
(unsigned long)

4 bytes (32
bits)

0 to 4,294,967,295

signed long int
(signed long)

4 bytes (32
bits)

–2,147,483,648 to 2,147,483, 647 (–231 to
231–1)

float 4 bytes (32
bits)

3.4 × 10-38 to 3.4 × 1038

double 8 bytes (64
bits)

1.7 × 10-308 to 1.7 × 10308

long double 10 bytes (80
bits)

3.4 × 10-4932 to 1.1 × 104932

The type void can be used to specify the return type of a function when
it is not returning any value, to indicate an empty argument list to a
function, and in the declaration of generic pointers. For example,
• To specify return type and empty argument list

void anyfunction(void);

• To declare generic pointers
A generic pointer can be assigned a pointer value of any basic data
type as follows:

void *gp;
int *ip;
gp = ip;

We can also assign void pointer to other type pointers as follows:

ip = (int*)gp;

Note: Two more data types, bool and wchar_t has also added in ANSI C++.

 By-Prem Raj Bhatta 8

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

User Defined Data Types

In C++, we can use the concepts of struct, union and class (discussed later) to define
user-defined data types.

Another way is to use enumerated data type. An enumeration, introduced by the
keyword enum and followed by a type name, is a set of integer constants represented by
identifiers (also called enumeration constants). The values on these identifiers start at 0,
unless specified, and incremented by 1. The identifiers must be unique, but can have the
same integer value. Some examples are given below:

enum color {red, blue, green, yellow}; enum boolean {false, true};
color background; boolean b = true;
background = blue;

enum gender {male, female};
gender g =male;

Some valid definitions are:
enum suit {clubs = 1, diamonds, hearts, spades};
enum color {red, blue = 4, green = 8};

Variables
A variable is the name used for the quantities which are manipulated by a computer
program. i.e. it is a named storage location in memory. For example a program that reads
a series of numbers and sums them will have to have a variable to represent each number
as it is entered and a variable to represent the sum of the numbers.
In order to distinguish between different variables, they must be given identifiers, names
which distinguish them from all other variables. The rules of C++ for valid identifiers
state that:
An identifier must:

• start with a letter
• consist only of letters, the digits 0-9, or the underscore symbol _
• not be a reserved word

For the purposes of C++ identifiers, the underscore symbol, _, is considered to be a letter.
Its use as the first character in an identifier is not recommended though, because many
library functions in C++ use such identifiers.
The following are valid identifiers
Length days_in_year DataSet1 Profit95
Int _Pressure first_one first_1
although using _Pressure is not recommended.
The following are invalid:
days-in-year 1data int first.val throw
Identifiers should be chosen to reflect the significance of the variable in the program
being written. Although it may be easier to type a program consisting of single character
identifiers, modifying or correcting the program becomes more and more difficult. The
minor typing effort of using meaningful identifiers will repay itself many fold in the
avoidance of simple programming errors when the program is modified.

 By-Prem Raj Bhatta 9

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

 C++ is case-sensitive. That is lower-case letters are treated as distinct from upper-
case letters. Thus the word main in a program is quite different from the word Main or the
word MAIN.

Reserved words
The syntax rules (or grammar) of C++ define certain symbols to have a unique meaning
within a C++ program. These symbols, the reserved words, must not be used for any
other purposes. All reserved words are in lower-case letters. The table below lists the
reserved words of C++.
C++ Reserved Words
and and_eq asm auto bitand
bitor bool break case catch
char class const const_cast continue
default delete do double dynamic_cast
else enum explicit export extern
false float for friend goto
if inline int long mutable
namespace new not not_eq operator
or or_eq private protected public
register reinterpret_cast return short signed
sizeof static static_cast struct switch
template this throw true try
typedef typeid typename union unsigned
using virtual void volatile wchar_t
while xor xor_eq

Some of these reserved words may not be treated as reserved by older compilers.
However it is better to avoid their use. Other compilers may add their own reserved
words. Typical are those used by Borland compilers for the PC, which add near, far, huge,
cdecl, and pascal.

Declaration of variables
In C++ (as in many other programming languages) all the variables that a program is
going to use must be declared prior to use. Declaration of a variable serves two purposes:

• It associates a type and an identifier (or name) with the variable. The type allows
the compiler to interpret statements correctly. For example in the CPU the
instruction to add two integer values together is different from the instruction to
add two floating-point values together. Hence the compiler must know the type of
the variables so it can generate the correct add instruction.

• It allows the compiler to decide how much storage space to allocate for storage of
the value associated with the identifier and to assign an address for each variable
which can be used in code generation.

 By-Prem Raj Bhatta 10

Migrating from C to C++

Expressions and Statements
An expression is any arrangement of operands and operators that specifies a computation.
For example, a + 13, a++, and (a – 5) * b / 2 are expressions.

Expressions and statements are not same. Statements tell the compiler to do
something and they must terminate with a semicolon (also known as the statement
terminator), while expressions specify a computation. There can be several expressions in
a statement.

The const Qualifier
The keyword const (for constant) precedes the data type and specifies that the value will
not change throughout the program. Any attempt to alter the value will give error
message from the compiler. C++ requires a const to be initialized. For example,

const int size = 10;

A const in C++ is local to the file where it is declared. To make it visible to other
files, we must explicitely define it as an extern. For example,

extern const int size = 10;

Type Conversion
There are two types of type conversion: automatic conversion and type casting.
• Automatic Conversion: When two operands of different types are encountered in the

same expression, the lower type variable is converted to the type of the higher type
variable by the compiler automatically. This is also called type promotion. The order
of types is given below:

Data Type Order
long double (highest)
double
float
long
int
char (lowest)

• Type Casting: Sometimes, a programmer needs to convert a value from one type to
another in a situation where the compiler will not do it automatically. For this C++
permits explicit type conversion of variables or expressions as follows:

(type-name) expression //C notation
type-name (expression) //C++ notation
For example,
int a = 10000;
int b = long(a) * 5 / 2; //correct
int b = a * 5/2; //incorrect (can you think how?)

 By-Prem Raj Bhatta 11

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

Scope Resolution Operator(::)
C++ supports a mechanism to access a global variable from a function in which a local
variable is defined with the same name as a global variable. It is achieved using the scope
resolution operator.
 :: GloabalVariableName
The global variable to be accessed must be preceded by the scope resolution operator. It
directs the compiler to access a global variable, instead of one defined as a local variable.
The scope resolution operator permits a program to reference an identifier in the global
scope that has been hidden by another identifier with the same name in the local scope.

//An example of use of scoperesolution operator ::
#include<iostream.h>
#include<conio.h>
int x=5;
void main()
{
 int x=15;
 cout<<"Local data x="<<x<<"Global data x="<<::x<<endl;
 {
 int x=25;
 cout<<"Local data x="<<x<<"Global data x="<<::x<<endl;
 }
 cout<<"Local data x="<<x<<"Global data x="<<::x<<endl;
 cout<<”Global +Local=”<<::x +x;

 getch();
}

Reference Variables:
C++ introduces a new kind of variable known as reference variable. A reference variable
provides an alias (Alternative name) of the variable that is previously defined. For
example, if we make the variable sum a reference to the variable total, the sum and total
can be used interchangeably to represent that variable.
Syntax for defining reference variable
 Data_type & reference_name = variable_nane
Example:
 int total=100 ;
 int &sum=total;
 Here total is int variable already declared. Sum is the alias for variable total. Both the
variable refer to the same data 100 in the memory.
cout<<total; and cout<<sum; gives the same output 100.
 And total= total+100;
Cout<<sum; //gives output 200

A reference variable must be initialized at the time of declaration. This establishes
the correspondence between the reference and the data object which it means. The
initialization of reference variable is completely different from assignment to it.
A major application of the reference variables is in passing arguments to function.

 By-Prem Raj Bhatta 12

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

//An example of reference
#include<iostream.h>
#include<conio.h>

void main()
{
 int x=5;
 int &y=x;
 //y is alias of x
 cout<<"x="<<x<<"and y="<<y<<endl;
 y++;
 //y is reference of x;
 cout<<"x="<<x<<"and y="<<y<<endl;
 getch();
}

Passing by reference
We can pass parameters in function in C++ by reference .When we pass
arguments by reference, the formal arguments in the called function become
aliases to the actual arguments in the calling function i.e. when function is
working with its own arguments , it is actually working on the original data.
Example

void fun(int &a)
//a is reference variable
{
 a=a+10;
}
 int main()
 {

int x=100;
 fun(x); //CALL
 cout<<x; //prints 110
}
when function call fun(x) is executed, the following initialization occurs:
 int &a=x; i.e. a is an alias for x and represent the same data in memory. So
updating a in function causes the update the data represented by x. this type of
function call is known as Call by rererence.

//pass by reference
#include<iostream.h>
#include<conio.h>
void swap(int &, int &);
void main()
{
 int a=5,b=9;
 cout<<"Before Swapping: a="<<a<<" and b="<<b<<endl;
 swap(a,b);//call by reference

 By-Prem Raj Bhatta 13

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

 cout<<"After Swapping: a="<<a<<" and b="<<b<<endl;
 getch();
}

void swap(int &x, int &y)
{
 int temp;
 temp=x;
 x=y;
 y=temp;
}

Return by reference
A function can return a value by reference. This is a unique feature of C++.
Normally function is invoked only on the right hand side of the equal sign. But we
can use it on the left side of equal sign and the value returned is put on the right
side.

//returning by reference from a function as a parameter
#include<iostream.h>
#include<conio.h>
int x=5,y=15;//globel variable
int &setx();
void main()
{
 setx()=y;
 //assign value of y to the variable
 //returned by the function
 cout<<"x="<<x<<endl;
 getch();
}
int &setx()
{
 //display global value of x
 cout<<"x="<<x<<endl;
 return x;
}

Inline Function:
A inline function is a short-code function written and placed before main

function and compiled as inline code. The prototyping is not required for inline
function. It starts with keyword inline . In ordinary functions, when function is
invoked the control is passed to the calling function and after executing the
function the control is passed back to the calling program.

But , when inline function is called, the inline code of the function is
inserted at the place of call and compiled with the other source code together. That
is the main feature of inline function and different from the ordinary function. So
using inline function executing time is reduced because there is no transfer and
return back to control. But if function has long code inline function is not suitable
because it increases the length of source code due to inline compilation.

 By-Prem Raj Bhatta 14

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

// Inline Function
//saves memory, the call to function cause the same code to be
//executed;the function need not be duplicated in memory
#include<iostream.h>
#include<conio.h>
inline float lbstokg(float pound)
{
 return (0.453592*pound);
}

void main()
{
 float lbs1=50,lbs2=100;
 cout<<"Weinght in Kg:"<<lbstokg(lbs1)<<endl;
 cout<<"Weinght in Kg:"<<lbstokg(lbs2)<<endl;
 getch();
}

Default Arguments

In C++ a function can be called without specifying all its arguments. In
such cases, the function assigns a default value to the parameter which does not
have a matching argument in the function call. The default value are specified
when function is declared.
 The default value is specified similar to the variable initialization . The
prototype for the declaration of default value of an argument looks like
float amount(float p, int time, float rate=0.10);
// declares a default value of 0.10 to the argument rate.
 The call of this function as
value = amount(4000,5);// one argument missing for rate
 passes the value 4000 to p , 5 to time and the function looks the prototype for
missing argument that is declared as default value 0.10 the the function uses the
default value 0.10 for the third argument. But the call
 value = amount(4000,5,0.15);
no argument is missing , in this case function uses this value 0.15 for rate.

Note : only the trailing arguments can have default value. We must add default
from right to left. E.g.
int add(int a, int b =9, int c= 10); // legal
int add(int a=8, int b, int c); // illegal
int add(int a, int b = 9, int c); //illegal
int add(int a=8, int b=9,int c=10) // legal

//default arguments in function
//define default values for arguments that are not passed when
//a function call is made

 By-Prem Raj Bhatta 15

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

#include<iostream.h>
#include<conio.h>
void marks_tot(int m1=40,int m2=40, int m3=40);
void main()
{
 //imagine 40 is given if absent in exam.
 marks_tot();
 marks_tot(55);
 marks_tot(66,77);
 marks_tot(75,85,92);
 getch();
}

void marks_tot(int m1, int m2, int m3)
{
 cout<<"Total marks"<<(m1+m2+m3)<<endl;
}

Const Arguments
 When arguments are passed by reference to the function, the function can
modify the variables in the calling program. Using the constant arguments in the
function , the variables in the calling program can not be modified. const qualifier
is used for it.
e.g.
void func(int&,const int&);
 void main()
{
 int a=10, b=20;
 func(a,b);
}
void func(int& x, int &y)
{
 x=100;
 y=200; // error since y is constant argument
}

Function overloading
Overloading refers to the use of same thing for different purpose.
When same function name is used for different tasks this is known as function
overloading. Function overloading is one of the important feature of C++ and any
other OO languages.

 By-Prem Raj Bhatta 16

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

 When an overloaded function is called the function with matching
arguments and return type is invoked.
e.g.
 void border(); //function with no arguments
void border(int); // function with one int argument
void border(float); //function with one float argument
void border(int, float);// function with one int and one float arguments

For overloading a function prototype for each and the definition for each function
that share same name is compulsory.
//function overloading
//multiple function with same name
#include<iostream.h>
#include<conio.h>
int max(int ,int);
long max(long, long);
float max(float,float);
char max(char,char);
void main()
{
 int i1=15,i2=20;
 cout<<"Greater is "<<max(i1,i2)<<endl;
 long l1=40000, l2=38000;
 cout<<"Greater is "<<max(l1,l2)<<endl;
 float f1=55.05, f2=67.777;
 cout<<"Greater is "<<max(f1,f2)<<endl;
 char c1='a',c2='A';
 cout<<"Greater is "<<max(c1,c2)<<endl;
 getch();
}

int max(int i1, int i2)
{
 return(i1>i2?i1:i2);
}

long max(long l1, long l2)
{
 return(l1>l2?l1:l2);
}

float max(float f1, float f2)
{
 return(f1>f2?f1:f2);
}

char max(char c1, char c2)
{
 return(c1>c2?c1:c2);
}

 By-Prem Raj Bhatta 17

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

Structure review
 An structure is an user defined data type which contains the collection of
different types of data under the same name. A structure is compared with records
in other languages.
Syntax:
 struct tag-name
 {
 data-type var-name;
 data-type var-name;
 …………………..
 } ; //end of structure
 e.g. struct currency
 {
 int rs;
 float ps;
 };

declaring variable of structure
 tag-name st-var-name; e.g. currency c1,c2;
Initialization of structure variable: structure variable can be initialized at the
time of declaraction as
currency c1 ={ 144,56.7};
 However each member data of structure variable can be initialized separately after
declaration as
currency c1;
c1.rs=144;
c1.ps=56.7;
But initialization all member data at once listing is illegal after declaration as
currency c1;
c1={144,56.7} // error:

Computation using structure
 A simple Example.
#include<iostream.h>
 struct currency
{
 int rupees;
 float paise;
}; // currency is name for struct currency

void main()
{
 currency c1,c3;
 currency c2 ={123,56.4};

 By-Prem Raj Bhatta 18

Downloaded from: http://www.bsccsit.com/

Migrating from C to C++

 cout<<"Enter Rupees:"; cin>> c1.rupees;
 cout<<"Enter paises"; cin>> c1. paise;
 c3.paise = c1.paise+ c2.paise;
 if(c3.paise>=100.0)
 {
 c3.paise-=100.0 ;
 c3.rupees++;
 }
 c3.rupees+=c2.rupees+c1.rupees;
 cout<<"Rs." <<c1.rupees<<" Ps. " <<c1.paise<<" + ";
 cout<<"Rs." <<c2.rupees<<" Ps. "<<c2.paise<<" = ";
 cout<< "Rs."<<c3.rupees<<" Ps."<<c3.paise<<endl;
}

Passing structure as function arguments
A function can receive the structure as parameter and is able to access and operate
on the individual elements of the structure. When passing the structure variable as
the function argument the whole variable is not passed but only the reference
(address) of the structure variable is passed. The following example shows the
passing structure as function argument.

//passing structure as function argument
#include<iostream.h>
#include<conio.h>
struct currency
{
 int rs;
 float ps;
};

currency addcurr(currency,currency);
void main()
{
 currency c3;
 currency c1={100,58.5};
 currency c2={200,62.8};
 c3 = addcurr(c1,c2);
 cout<<"Sum is Rs."<<c3.rs<<"Ps."<<c3.ps<<endl;
 getch();
}
currency addcurr(currency cc1, currency cc2)
{
 currency cc3={0,0.0};
 cc3.ps=cc2.ps+cc1.ps;
 if(cc3.ps>=100.0)
 {
 cc3.ps-=100.0;
 cc3.rs++;
 }
 cc3.rs+=cc1.rs+cc2.rs;
 return cc3;
 }

 By-Prem Raj Bhatta 19

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

3. C++ Operators and Control Structures
The following table shows decreasing order of precedence from top to bottom.

Operator Type Associativity
::
::

binary scope resolution
unary scope resolution

left to right

()
[]
.
−>
++
--

parentheses
array subscript
member selection via object
member selection via pointer
unary postincremet
unary postdecrement

left to right

++
--
+
-
!
~
(type)
sizeof
&
*
new
new[]
delete
delete[]

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
unary cast
determine size in bytes
address
dereference
dynamic memory allocation
dynamic array allocation
dynamic memory deallocation
dynamic array deallocation

right to left

.*
−>*

pointer to member via object
pointer to member via pointer

left to right

*
/
%

multiplication
division
modulus

left to right

+
-

addition
subtraction

left to right

<<
>>

bitwise shift left
bitwise shift right

left to right

<
<=
>
>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

==
!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right
∧ bitwise exclusive OR left to right
| bitwise inclusive OR left to right

&& logical AND left to right

|| logical OR left to right

By- Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

?: ternary conditional right to left
=
+=
−=
∗=
/=
%=
&=
∧=
|=
<<=
>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left-shift assignment
bitwise right-shift assignment

right to left

, Comma left to right

Control Structures
Like C, C++ also supports the following three control structures:

1. Sequence structure (straight line)
2. Selection structure (branching or decision)
3. Loop structure (iteration or repetition)

1. Sequence structure: In this structure, the sequence statements are executed one
after another from top to bottom.

statement 1;
statement 2;
statement 3;
…………..
statement n;

In this case statement 1 is executed before statement 2, statement 2 is executed
before statement 3, and so on.

2. Selection structure: This structure makes one-time decision, causing a one-time
jump to a different part of the program, depending on the value of an expression.
The two structures of this type are: if and switch.

A. The if statement: There are three forms of if statement.

a. Simple if: The syntax is:

if(expression) {
 statement (s);
}

This statement lets your program to execute statement(s) if the value of the
expression is true (non-zero). If there is only one statement, it is not
necessary to use braces.

Example piece of code:
int x = 5, y = 10;
if(x<10)
 cout<<“X is less than ten”;
if(y > 10)

By- Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

 cout<<“wow y is greater than ten”;

Output:
Here since only the condition at the first if statement is true i.e. x<10, the
output is
X is less than ten

b. The if-else statement: The syntax is:

if (expression) {
 statement(s);
} else {
 statement(s);
}

If the value of the expression is true, the program executes the statement(s)
following if otherwise the statement(s) following else. If there is only one
statement, it is not necessary to use braces.

Example piece of code:
int x = 3;
if(x>2)
 cout<<“condition true”;
else
 cout<<“condition false”;

Output:
Since x = 3, x>2 is true so the output is - condition true. If we had x = 1,
then x>2 would have been false giving us an output as – condition false.

c. The if-else-if ladder: The syntax is:

if (expression) {
 Statement(s);
} else if (expression) {
 Statement(s);
} else if (expression) {
 statement(s);
}
…
} else {
 Statement(s);
}

In this case, the program goes down until one of the expressions is true. It
then executes the following statement(s) and exits. If none of the
expressions are true, the program executes the statement(s) following else.
If there is only one statement, it is not necessary to use braces.

Example piece of code:
int age // this is taken as input
if(age < 18)
 cout<< "You are a child";
else if(age < 55)
 cout<< "You are an adult";
else

By- Prem Raj Bhatta 8

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

 cout<< "You are a senior";
Output:
Determine the output if age = 24. (Is it, You are an adult??)

B. The switch statement: The syntax form is:

switch (expression) {
 case value 1:
 statement(s);
 break;
 case value 2:
 statement(s)
 break;
 ……
 case value n:
 statement(s);
 break;
 default:
 statement(s);
}

In this case, the value of the expression is compared with each of the constant
values in the case statements. If a match is found, the program executes the
statement(s) following the matched case statement. If none of the constants
matches the value of the expression, then the program executes the
statement(s) following default statement. However, the default statement is
optional.

The value of the expression must be of type integer or character and each
of the values specified in the case statement must be of a type compatible with
the expression. Each case value must be a unique literal. Duplicate case values
are not allowed. The break statement is used to terminate the entire switch
statement.

Consider the following example:
switch(month) {
 case 4:
 case 6:
 case 9:
 case 11:
 cout<< "30 days";
 break;
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 cout<< "31 days";
 break;
 case 2:
 cout<< "if leap year 29 days else 28 days";

By- Prem Raj Bhatta 9

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

 break;
 default:
 cout<< "not a number for months must be 1-12";
 }
If month is 4, 6, 9, or 11, then “30 days” is printed. If month is 1, 3, 5, 7, 8,
10, or 12, then “31 days” is printed. If month is 2, then “if leap year 29 days
else 28 days” is printed. Lastly, if the month value is not between 1 and 12 no
case is matched, so the default statement “not a number for months must be 1-
12” is printed.

3. Loop Structure: These structures repeatedly execute a section of your program a
certain number of times. The repetition continues while a condition is true. When
the condition becomes false, the loop ends and control passes to the statement
following the loop. C++ provides three kinds of loops: the for loop, the while
loop, and the do loop.
A. The for loop: The general form is:

for(initialization; test expression; iteration) {
 Statement(s);
}

First before loop starts, the initialization statement is executed that initializes
the loop control variable or variables in the loop. Second the test expression is
evaluated, if it is true, the program executes the statement(s). Finally, the
iteration (usually an expression that increments or decrements the loop control
variables) statement will be executed, and the test expression will be
evaluated, this continues until the test expression is false.

The curly braces are unnecessary if only a single statement is being
repeated. When we have the fixed number of the iteration known then we
usually (although not always) use for loop.

Example piece of code:
for(int i=10; i > 1; i--)
 cout<<i;

Output:
10 9 8 7 6 5 4 3 2

B. The while loop: The general form is:

while(test expression) {
 statement(s);
}

Here the program executes the statement(s) as long as the test expression is
true. When the test expression becomes false, the while loop stops executing
the statement(s).

The curly braces are unnecessary if only a single statement is being
repeated. This loop structure is usually used if we don’t know the number of
iterations before the loop starts.

Example piece of code:
int i=1;
while(i <= 10) {

cout<< "i="<< + i;

By- Prem Raj Bhatta 10

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

i++;
}

Output:
The above code prints the number 1 to 10 as i = 1, i = 2, …, i = 10, when i
reaches 11 the condition i<=10 becomes false and the loop terminates.

Remember: Do not forget to increment i, otherwise loop will never terminate
i.e. code goes into infinite loop. So when using loop, remember to guarantee
its termination.

C. The do-while loop: The general form is:

do{
 statement(s);
} while(test expression);

In this case, the program executes the statement(s) first and then evaluates the
test expression. If this expression is true, the loop will repeat. Otherwise, the
loop terminates.
The curly braces are unnecessary if only a single statement is being repeated.
This loop always executes statement(s) at least once, because its test
expression is at the bottom of the loop.

Example piece of code:
int i = 10;
do{
 cout<< "Hello";
 i++;
} while(i < 10);

Output:
“Hello” is printed, though i<10 is false.

Jump Statements
For the transfer of control from one part of the program to another, C++ supports
three jump statements: break, continue, and return.
A. The break Statement: The use of break statement causes the immediate

termination of the switch statement and the loop (all type of loops) from the point
of break statement. The control then passes to the statements following the switch
statement and the loop.

Example piece of code:
for(int i = 1; i <= 10; i++) {
 if(i == 5)
 break;
 cout<< " i = "<< i;
 }
}

Output:
i = 1 i = 2 i = 3 i = 4
In the code above the loop is terminated immediately after the value of i is 5.

By- Prem Raj Bhatta 11

Downloaded from: http://www.bsccsit.com/

C++ Operators and Control Structure

Remember: In case of nested loop if break statement is in inner loop only the inner
loop is terminated.
B. The continue Statement: Continue statement causes the execution of the current

iteration of the loop to stop, and then continue at the next iteration of the loop.

Example:
for(int i=1; i<= 10; i++) {
 if(i == 5 || i == 7) {
 continue;
 }
 cout<<i<<“ ”;
}

Output:
1 2 3 4 6 8 9 10

C. The return Statement: It is used to transfer the program control back to the caller
of the method. There are two forms of return statement. First with general form
return expression; returns the value whereas the second with the form return;
returns no value but only the control to the caller.

By- Prem Raj Bhatta 12

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

4. CLASSES AND OBJECTS
Structure in C and Structures in C++
Structures in C

 One of the unique features of C language
 Provides method for packing together the data of different types
 Convenient tool for handling a group of logically related data items.

Consider:
struct complex
{

 int real;
 int img;

};
 struct complex c1, c2, c3;

The complex number c1, c2, c3 are assigned values using a dot or period operator.
But—

 We cannot add or subtract two structure variables in C.
 Also data hiding is not permitted in C

Structures in C++

 C++, Structure supports all features of Structures in C.
 We can easily add or subtract two structure variables.
 C++, Structure can have both data and function. Data are called data member

while functions are called the member function.
 In C++, structure names are Stand-alone i.e. Keyword struct may be omitted in

the declaration of structure variable.
E.g.
 struct student
{
 char name[20];
 int roll;
};
student s1,s2; //C++ declaration
 //Invalid in C

 In C++, a structure member can be declared as “Private” so that they cannot be
accessed directly by the external function.

By- Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

Example:
Simple program shows the use of structures with member data and function both.

#include<iostream.h>
#include<conio.h >
 struct coordinate
{
 int x; //x coordinate
 int y; //y coordinate
 void read()
 {
 cout<<"x coordinate"; cin>>x;
 cout<<"y coordinate"; cin>>y;
 }
 void print()
 {
 cout<<"("<<x<<","<<y<<")";

 }

 void add(coordinate p1, coordinate p2)
 {
 x=p1.x+p2.x;
 y=p1.x+p2.y;
 }
}; //end of structure definition
void main()
{
 coordinate p1,p2,p3;
 cout<<"enter co-ordinates of first point"<<endl;
 p1.read();
 cout<<"enter co-ordinate of second points"<<endl;
 p2.read();
 p1.print();
 p2.print();
 p3.add(p1,p2);//p3=p1+p2
 p3.print();
 getch();
}

• In main(),p1.read();executes the member function read() defined in the structure

co-ordinate
• The data values for p1 are assigned with input values.
• The statement p1.print() ; displays data member with message passed as function

argument.
• p3.add(p1,p2) adds the contents of corresponding data members of p1 and p2 and

assign the sum to p3
• Structure members are public by default
• The structures are extended in C++ and the new type class is defined for OOP.

By- Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

Class
 A class is a way to bind the data and its associated functions together.
 It allows the data and function to be hidden, if necessary form the external use.

Class Specification

Class Specification has the two parts:

1. Class declaration
2. Class function definition

Class declaration
 Class declaration describes the type and scope of its member
The general form of class declaration
 class class-name
 {
 private:
 variable declaration
 function declaration
 public:
 variable declaration
 function declaration
 };

 Class declaration is similar to a structure declaration.
 The class body contains the declaration of variables and functions. These are

collectively called the members.
 Members are usually grouped under two sections, private and public to denote

which of the members are private and which of them are public.
 The keyword public and private are known as visibility labels and are followed

by colon.
 The members that have been declared as private can be accessed only from

within the class. Where as the members that have been declared as public can be
accessed from the outside the class also.

 The data hiding using private keyword is the key feature of the OOP.
 The use of keyword private is optional, by default the member of a class are

private. If both of levels are missing, such a class is completely hidden from the
outside world and does not have any purpose.

 In OOP, generally data are made private and functions are made public.
Creating the Objects
 The Object of class are defined as,
class-name object-name;
e.g.
class test
{

};
test t1, t2; //two object of class test

By- Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

How Class provides the data hiding

 fig. data hiding in class
 The data declared inside the class are called the data member and the functions are
called the member function. Only the member function can have access to the private data
members and private functions. The private members have no access to the external function
i.e. private members are hidden from the external function so provide the data encapsulation.

The binding of data and function together into a single class-type variable is called
encapsulation.
Example to show the data encapsulation:
class test
 {
 int x;
 public:
 int y;
 };

 void main()
 {
 test t; //creating the object
 t.x=10; //error, x is a private
 t.y=15; //ok, y is public
 }

By- Prem Raj Bhatta 4

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

Difference between the Structure in C++ and class in C++
 There is very little syntactical difference between the structures and class in C++,
therefore they can be used interchangeably with minor modification.
 The only difference between a Structure and Class in C++ is that, by default the
members of a class are private while the default members of Structure are public.
 Example:
//prog 1 //prog 2
#include <iostrem.h> #include <iostream.h>
struct example class example
{ {
 float a; float a;
}; };
int main() int main()
{ {
 example ex; example ex;
 cout<<”Enter the floating no”; cout<<”Enter the floating no”;
 cin>> ex.a; cin>>ex.a;
 cout<<”the no is:”<<ex.a<<”\n”; cout<<”the no is:” <<ex.a;
 return 0; return 0;
} }
The first program prog1 is compiled and we get the required output because in structure all
member are public and it can be used by function main. While in second program we get the
error message like:”Float ‘a’ is not accessible in main ()”. Because member in class are by
default private and cannot be accessible in main function.

ACCESSING CLASS MEMBER: We can access the class member by using dot operator
as,
Accessing data member

Syntax:
Object-name.Datamember

Accessing Member Functions
 Objectname.function-name (actual arguments);
Example:
#include<iostream.h>
#include<string.h>
class student
{

private:
 int roll_no;
 char name[20];

public:

 void getdata();
{

cout <<”enter roll no:”;
cin>>roll_no;

 cout<<”enter name”;
 cin>>name;
 }

void showdata()

By- Prem Raj Bhatta 5

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

{
cout<<”roll no”<<roll_no;
cout<<”Name:”<<name;

}
}; //end class

void main()
{

student s1,s2,s3;
cout<<enter records for student1”;
s1.getdata();
cout<<”enter record for student2”;
s2.getdata();
cout<<”enter record for student3”;
s3.getdata();
//display
s1.showdata();

 s2.showdata();
S3.showdata();

}

Defining member function:
 Member function definition describes how the class functions are implemented.
 Member functions can be defined in two places

• outside the class definition
• inside the class definition

1. Inside the class definition:
The member function defines inside the class are considered as an inline

automatically and no need of keyword inline.
The example of member functions showdata(), getdata() etc in above

examples are defined inside the class definition.
2. Outside the class definition:

 The member functions that are declared inside the class can be defined
outside the class. The function definition outside a class definition consists of
the function header with associated class label to represent the membership of
that class and contains the body of the function.

Syntax of the function definition outside class definition is as follows:
 return-type classname::function name(arguments..)

{
function Body;

}
The :: operator tells the compiler that function is member of that class.

An example

//an example of function

By- Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

//definition outside the class
#include<iostream.h>
#include<conio.h>
class student
{
 private:
 int roll;
 char name[20];
 public:
 void getdata();//function declaration
 void showdata();

}; // end of class

// definition of functions outside class
void student::getdata()
 {
 cout<<"\nEnter Roll No:";
 cin>>roll;
 cout<<"\nEnter Name:";
 cin>>name;
}
void student::showdata()
 {
 cout<<"name:"<<name<<endl;
 cout<<"roll no:"<<roll<<endl;
 }
void main()
{
 student s1,s2;
 s1.getdata();
 s2.getdata();
 cout<<"first student"<<endl;
 s1.showdata();
 cout<<"second student"<<endl;
 s2.showdata();
 getch();
}

Example of class to find the roots of a Quadratic equation: ax2 + bx + c = 0
#include <iostream.h>
#include <math.h>
class quadratic
{
 float a, b, c;
 public:
 void set_data(float l, float m, float n)
 {
 a=l;
 b=m;
 c=n;
 }
 void equal_root()
 {

By- Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

 float r;
 r= -b/(2*a);
 cout<<”The roots are equal”;
 cout<<”X=” <<r<<”\n”;
 }
 void real_root(float dis)
 {
 float r1,r2,temp;
 temp = sqrt(dis);
 r1 = (-b+ temp)/(2*a);
 r2 = (-b-temp)/(2*a);
 cout<<”Roots are real”;
 cout<<”Root1=”<<r1<<”\n”;
 cout<<”Root2=”<<r2<<”\n”;
 }
};
void main()
{
 quadratic eq;
 float aa,bb,cc;
 cout<<”Enter three floating point number:”;
 cin>>aa>>bb>>cc;
 eq.set_data(aa,bb,cc);
 if(aa==0 && bb!=0)
 {
 float temp;
 temp=cc/bb;
 cout<<”Roots are linear”<<endl;
 cout<<”X=”<<temp<<”\n”;
 }
 else
 {
 float disc;
 disc= bb*bb-4*aa*cc;
 if (disc = = 0)
 eq.equal_root();
 else if (disc > 0)
 eq.real_root(disc);
 else
 cout<<”Roots are imaginary:”;
 }
}

Another Example of class by using string function
//string as class member
#include<iostream.h>
#include<conio.h>
#include<string.h>

class student

By- Prem Raj Bhatta 8

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

{
 private:
 char name[25];
 int age;
 float weight;
 public:
 void setdata(char sname[],int sage, int sweight)
 {
 strcpy(name,sname);
 age=sage;
 weight=sweight;
 }

 void showdata()
 {
 cout<<"\nName="<<name;
 cout<<"\nAge="<<age;
 cout<<"\nWeight="<<weight;
 }
};

void main()
{
 student s1,s2;
 s1.setdata("Ram Bdr",18,65.5);
 s2.setdata("Sita Devi",28,55.09);

 s1.showdata();
 cout<<endl;
 s2.showdata();

getch();
}

Nested of member function

 Since a member function of a class can only be called by an object of that class using a

dot operator.
 However, a member function can be called by using its name inside another member

function of the same class. This is known as nesting of member functions.
Example:

//nesting member function
#include<iostream.h>
#include<conio.h>
class set
{
 private:
 int m,n;
 public:
 void input();
 int largest();
 void display();

By- Prem Raj Bhatta 9

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

};

inline int set::largest()
{
 if(m>=n)
 return m;
 else
 return n;
}

inline void set::input()
{
 cout<<"input values of m & n"<<endl;
 cin>>m>>n;
}
void set::display()
{
 cout<<"largest value="<<largest()<<endl;
}
void main()
{
 set set1;
 set1.input();
 set1.display();
}

An Array of Objects

As we know an array is a collection of similar data types. We can have an array of user defined
data types class. Such variables are called arrays of objects. Like a structure we can use array
of a class.
e.g.
class Test
{
 float a;
};
the array of object can be declared as:
 Test T[n]; //arrays of n Test i.e. arrays of object
To access member data by objects we use array index as:
 T[i].input_data(); T[i].display(); where i may be 0 to n-1 in array of size n.
Example:
//Example to show arrays of Objects
#include<iostream.h>
#include<conio.h>
class test
{
 float a;
 public:

void set_data(float no)
 {
 a=no;

By- Prem Raj Bhatta 10

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

 }
 void input_data()
 {
 cout<<"Enter the floating no:"<<endl;
 cin>>a;
 }
 void display()
 {
 cout<<"The no is:"<<a<<"\n";
 }
};
void main()
{
 test t[4];
 t[0].set_data(10.55);
 t[1].input_data();
 t[2].input_data();
 t[3].set_data(11.66);
 for(int i=0;i<4;i++)
 t[i].display();
 getch();
}

Private member function and its Access

 Although it is normal to place all the data items in a private section and all the function
in public, in some situation certain functions require to be hidden (like private data) from
outside calls. Eg. Tasks such as deleting an account in a customer file. We can place these
functions in the public section.
 A private member function can only be called by another function that is a member of
its class. Even an object cannot invoke a private function using the dot operator.
 class account
 {
 int a;
 void read(void);
 public:
 void update(void);
 void write(void);
 };

 if acc1 is an object of account, then
 acc1.read() //error, because object cannot
 // access private member
However, the function read () can be called by the function update () to update the value of a

//accessing private member function
#include<conio.h>
#include<iostream.h>

By- Prem Raj Bhatta 11

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

class account
{
 private:
 int a;
 void read()
 {
 cout<<"a="<<endl;
 cin>>a;
 }
 public:
 void update()
 {
 read();//without dot operator
 }

 void write()
 {
 cout<<a;
 }
};

void main()
{
 account acc1;
 acc1.write(); //legal
 //if we write s1.read();// it will be illegal
 s1.update(); //legal
 getch();
}
Some special characteristic of member functions:

 Member functions can access the private data of the class. A non-member function
cannot do so, except the friend function

 A member function can call another member function directly without using the dot
operator.

 The private member functions and data cannot be accessed by the object of the class
directly.

 A function definition inside class definition as default behaves as inline but if it is
defined outside class definition, we should use keyword inline to make it inline
function.

By- Prem Raj Bhatta 12

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

Class and Object and Memory

 When a class is specified, memory space of all the member function is allocated but
memory allocation is not done for the data member.
 When an object is created, memory allocation for its data members is done. The logic
behind separate memory allocation for member functions is quite obvious. All instances of a
particular class would be using the same member functions but they may be storing different
data in their data members.
 Memory allocation for objects is illustrated in fig below
 Object 1 Object 2 Object n

Data 1 Data 1 Data 1
Data 2 Data 2 Data 2

. . .

.
 Data m Data m Data m
……

Function1 ()
Function2 ()
Function3 ()

.

.

.
Function k ()

It can be observed that “n” objects of the same class are created and data members of those
objects are stored in distinct memory location, whereas the member functions of object 1 to
object n are stored in the same memory area. Therefore, each object has a separate copy of data
members and the different objects share the member functions among them.

Note: try to answer the following question:
What are the commonality and differences between objects of same class? Justify your answer.

By- Prem Raj Bhatta 13

Downloaded from: http://www.bsccsit.com/

CLASSES AND OBJECTS

ASSIGNMENT
Long:

1. What is encapsulation and how does it help data hiding in Object-Oriented
Programming.

2. Create a class called employee that contains a empname (array of string) and an empid
(type long). Include a member function called getdata() to get data from the user for
inserting into the object and another function called putdata() to display the data.

 Write a main () program to exercise this class. It should create an array of the type
 employee and then invite the user to input data for up to 100 employees. Finally it
 should print out the data for all the employees. You need to make the array of
 employees an external variable.

Short

1. How do Structure in C and C++ differ?
2. What is a class? How does it accomplish data hiding?
3. Define the term Data and Class and what the relationship between a Class and

Object is.
4. Explain how Class provides data hiding with example.
5. What is meant by data Encapsulation?
6. Explain a member function? How is a member function of a class defined?
7. Differentiate between public and private definition.
8. How does a C++ structure differ from C++ class?
9. What are Objects and how they are created?

By- Prem Raj Bhatta 14

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

Constructors and Destructors:

Constructors:
 Constructors are member functions that are executed automatically when an
object is created. Thus no explicit call is necessary to invoke them through the dot
operator.
 The constructors are invoked whenever an object of its associated class is created.
It is called constructor because it construct the value of data members of the class.
Constructors are mainly used for data initialization.

Syntax:
class class-name
{
private:

public:
 class-name() //constructor
 {
 //Body of constructor
 }
};
 To understand how constructors work, let’s consider the following example:
//constructor
#include <iostrem.h>
class test
{
 public:
 test()
 {
 cout<<”In the constructor:”;
 }
};
void main()
{
 test t; //creation of object
}
 We have designed a class called “test” which has no data members and has only
one member function test(). In main(), an object of type test is defined.
When this program is run, the output is:
 In the constructor:
This implies that when an instance of an object is created, the member function test() is
automatically invoked. Such member functions which are executed automatically when
an instance of a particular class is created are known as constructors.
 The constructors have the same name as the class_name.
When an object is created, the following process will take place.

• The object occupies space at a particular time. Instantiation of an object always
involves reserving enough memory space for the data of that object.

• The instantiation does not reserve the memory for the methods. They exist only
once for class, not once for every object.

By- Prem Raj Bhatta

1

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

• In addition to the reservation of space, the constructor may also be extended to
other processes for initialization of data of that object.

• Constructor is a function (member) which is called automatically when object is
created.

//constructor
//automatic initialization is carried out using a special
//member function.
#include<iostream.h>
#include<conio.h>

class counter
{
 private:
 int count;
 public:
 counter() {count=0;}
 //constructor initialize value of count 0
 //same name as class name
 void inc_count(){count++;}
 int get_count(){return count;}
};

void main()
{

counter c1,c2; //automatically count=0
 cout<<"\n c1="<<c1.get_count();
 cout<<"\n c2="<<c2.get_count();
 c1.inc_count();
 c2.inc_count();
 c2.inc_count();
 cout<<"\n c1="<<c1.get_count(); //c1=1
 cout<<"\n c2="<<c2.get_count(); //c2=2
 getch();
}

In this sample example, there is a constructor whose task is to create objects and initialize
them by value count=0. The constructor counter(); is automatically invoked when object
c1 and c2 of class measure are created and both objects are initialized to given value as
defined by constructor.

Characteristics of constructors:

 Constructors name is the same as the class name.
 They should be declared in the public section.
 They are invoked automatically when the objects are created.
 They do not have return types, not even void and therefore they cannot return

value.
 They cannot be inherited.
 Like other functions, they can have default arguments.
 Constructors of a class are the first member function to be executed.

By- Prem Raj Bhatta

2

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

Types of constructor
There are three types of constructors:

1. The default constructor
2. User-defined constructor
3. Copy constructor

1. Default constructor: (also called implicit constructor.)
 The constructor that accepts no parameter is called the default constructor. The
default constructor of class A is A::A(). If no such constructor is defined, then the
compiler supplies a default constructor.
 Therefore, a statement such as,
 A a;
 Invokes the default constructor of the compiler to create the object “a”.

• The compiler provides a (hidden) default constructor that has no arguments.
• The default constructor takes no arguments and performs no processing other than

reservation of memory.
• This constructor is always called by compiler if no user-defined constructor is

provided.
• This constructor is automatically called while creating the object.

The main advantages of default constructor is to allocate memory for objects

Example:
class student
{
 private:

 public:

};
void main()
{
 student s1,s2 //default constructor student(),
 //(hidden) is automatically called.
}

2. User-defined constructor:

 If initialization of data of objects is required while creating an object, then the
programmer has to define his own constructor for that purpose. The code of a user
defined constructor does not actually cause memory to be reserved for the data because it
is still done by default constructor automatically.
 The user defined constructor take arguments.

 The main advantages of user defined constructor are to initialize the object while
it is created.

By- Prem Raj Bhatta

3

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

Example:
class test
{
 float a;
 public:
 test (float number)
 {
 a= number;
 }
 void display()
 {
 cout<<”The number is:”<<a;
 }
};
void main()
{
 test t1(2.99);
 test t2=3.99;
 test t3= test(8.99);
 t1.display();
 t2.display();
 t3.display();
}

3. Copy Constructor:
 Constructor having a reference parameter is known as copy constructor. The copy
constructor creates an object as an exact copy of another object in terms of its attributes.
In copy constructors, one newly instantiated object equals another exiting object of the
same class.
 Copy constructor are called using assignment operator or object as arguments
automatically.
Example:
Class test
{
 int id;
 public:
 test()
 { }
 test(int a)
 {
 id=a;
 }
 test (test &x)
 {
 id= x.id;
 }
 void display()
 {
 cout<<id;
 }
};
void main()
{
 test a(100);

By- Prem Raj Bhatta

4

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

 test b(a);
 test c=a;
 test d;
 d=a;
 cout<<”id of a:”<<a.display();
 cout<<”id of b:”<<b.display();
 cout<<”id of c:”<<c.display();
 cout<<”id of d:”<<d.display();
}

Parameterized Constructor:
 The constructors that can take arguments are called parameterized constructor.
Example:
Class test
{
 float a;
 public:
 test(float number)
 {
 a=number;
 }
 void display()
 {
 cout<<”the number is:”<<a;
 }
};
void main()
{
 test t1(4);
 test t2=5;
 t1.display();
 t2.display();
}

Constructor with default arguments:
 It is possible to define constructor with default arguments.
Example, if we have class like:
 class complex
 {
 float x,y;
 public:
 complex(float real, float imag =0)
 {
 x=real;
 y=imag;
 }
 };
The default value of the argument imag is zero. Then, the statement-
 complex c (5.0);

 assign the value 5.0 to the real variable and 0.0 to the imag(by default). However,
the statement—
 complex c (2.0,3.0);

 assign 2.0 to real and 3.0 to imag.

By- Prem Raj Bhatta

5

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

Example:
Class test
{
 float a;
 public:
 test(float number=0.0)
 {
 a=number;
 }
 void display()
 {
 cout<<”The no. is:”<<a;
 }
};
void main()
{
 test t1;
 test t2(2.99);
 test t3=test(3.99);
 test t4=4.99;
 t1.display();
 t2.display();
 t3.display();
 t4.dispaly();
}

Note: Don’t confuse with default constructor with default argument constructor. Try to
find difference between them.

Constructor overloading:
 A class can have multiple constructors. If more than one constructor is used in a
class, it is known as constructor overloading. All the constructors have the same name as
the corresponding class, and they differ in terms of number of arguments, data types of
argument or both. This makes the creation of object flexible.

Example:
//constructor overloading
#include <iostream.h>
#include <conio.h>

class Account
{
 private:
 int accno;
 float balance;
 public:
 Account() //constructor1
 {
 accno=1024;
 balance=5000.55;
 }
 Account(int acc) //constructor2 with one argument
 {
 accno=acc;

By- Prem Raj Bhatta

6

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

 balance=0.0;
 }

 Account(int acc, float bal) //constructor3,with two
 //arguments
 {
 accno=acc;
 balance=bal;
 }

 void display()
 {
 cout<<"Account no.="<<accno<<endl;
 cout<<"Balance="<<balance<<endl;
 }
 }; //end of class definition
 void main()
 {
 Account acc1; //constructor1
 Account acc2(100); //constructor2
 Account acc3(200, 8000.50); //constructor3
 cout<<endl<<"Account information"<<endl;
 acc1.display();
 acc2.display();
 acc3.display();
 getch();
 } //end of main()

Destructors:
 A destructor is a member function which is automatically called when a program
finishes execution. As name implies, destructor is used to destroy the objects that have
been created by a constructor. Like a constructor, the destructor is a member function
whose name is the same as the class name but is preceded by a tilde (~). Example for the
class test can be defied as-
 ~test()
 {

 }
Example:
Class test
{
 public:
 test()
 {
 cout<<”First in the constructor:”;
 }
 ~test()
 {
 cout<<”Now in the destructor:”;
 }
};
void main()
{
 test t;
}

By- Prem Raj Bhatta

7

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

Objects as Function Arguments
 Like any other data types, an object may be used as function arguments. This can
be done in two ways:

1. A copy of the entire object is passed to the function.
2. Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is passed to the
function, any changes made to the object inside the function do not affect the object used
to call the function. The second method is called pass-by-reference. When an address of
the object is passed, the called function works directly on the actual objects used in the
call. This means that any changes made to the object inside the function will reflect in the
actual object.
 The following program illustrates the object as the function arguments:
#include<iostream.h>
#include<conio.h>
class Distance
{
 int feet;
 float inches;
 public:
 Distance()
 {
 feet=0;
 inches=0.0;
 }
 Distance(int f, float i)
 {
 feet=f;
 inches=i;
 }
 void getdata()
 {
 cout<<"Enter the feet:";cin>>feet;
 cout<<"\nEnter the inches:";cin>>inches;
 }
 void display()
 {
 cout<<feet<<"\'"<<inches<<"\"";
 }
 void add_distance(Distance, Distance);
}; //End of class

void Distance::add_distance(Distance d1,Distance d2)
{
 inches=d1.inches+d2.inches;
 while(inches>=12.0)

 {
 inches-=12.0;
 feet +=1;
 }

By- Prem Raj Bhatta

8

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

 feet+=d1.feet+d2.feet;
}

int main()
{
 Distance dist1,dist3;
 Distance dist2(11,8.5);
 dist1.getdata();
 cout<<"\nDistance1=";dist1.display();
 cout<<"\nDistance2=";dist2.display();
 dist3.add_distance(dist1,dist2);
 cout<<"\nDistance3=";dist3.display();
 getch();
 return 0;
}

 dist3.feet dist1.feet dist2.feet

dist3.inches dist1.inches dist2.inches

dist3=dist1+dist2

 dist3.add_distance (dist1, dist2)

4

22

7.5

10

8.5

11

 fig accessing members of objects within a class function
Passing objects by reference: Passing objects as reference is same as the passing
variable function arguments. Just pass the reference of an object defining reference object
as arguments.
 The following program illustrates this idea
//object as function argument
//pass by reference

#include<iostream.h>
#include<conio.h>
class account
{
 private:
 int accno;
 float balance;
 public:
 void getdata()
 {
 cout<<"enter account no";
 cin>>accno;
 cout<<"enter balnce";
 cin>>balance;
 }
 void display()
 {
 cout<<"account number is "<<accno<<endl;

By- Prem Raj Bhatta

9

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

 cout<<"Balance is"<<balance<<endl;
 }
 void MoneyTransfer(account & acc,float amt);
 //function for transfer amount to some object passed
}; //end class
 void account::MoneyTransfer(account &acc, float amt)
 {
 balance=balance-amt;//deduct money from balance
 acc.balance=acc.balance+amt;//add money to
 destination
 }

void main()
{
 int money;
 account acc1,acc2;
 acc1.getdata();
 acc2.getdata();
 cout<<"A/C info: "<<endl;
 acc1.display();
 acc2.display();
 cout<<"how much money is to be transferred from acc2 to acc1";
 cin>>money;
 acc2.MoneyTransfer(acc1,money);//transfers money
 //from acc2 to acc1;
 cout<<"updated information of account: "<<endl;
 acc1.display();
 acc2.display();
 getch();
}

Returning Objects from Functions
 In previous example, we passed object as function arguments, now we will see an
example of a function that returns an object.

#include<iostream.h>
#include<conio.h>
class Distance
{
 int feet;
 float inches;
 public:
 Distance()
 {
 feet=0;
 inches=0.0;
 }
 Distance(int f, float i)
 {
 feet=f;
 inches=i;
 }
 void getdata()
 {
 cout<<"Enter the feet:";cin>>feet;
 cout<<"\nEnter the inches:";cin>>inches;

By- Prem Raj Bhatta

10

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

 }
 void display()
 {
 cout<<feet<<"\'"<<inches<<"\"";
 }
 Distance add_distance(Distance);
}; //End of class
Distance Distance::add_distance(Distance d2)
{
 Distance temp;
 temp.inches=inches+d2.inches;
 while(temp.inches>=12.0)
 {
 temp.inches-=12.0;
 temp.feet +=1;
 }
 temp.feet+=feet+d2.feet;
 return temp;
}
int main()
{
 Distance dist1,dist3;
 Distance dist2(11,10.25);
 dist1.getdata();
 cout<<"\nDistance1=";dist1.display();
 cout<<"\nDistance2=";dist2.display();
 dist3=dist1.add_distance(dist2);
 cout<<"\nDistance3=";dist3.display();
 getch();
 return 0;
}

 temp.feet feet dist2.feet

temp.inches inches dist2.inches

 dist3=dist1.add_distance (dist2)

11

8.5
7.5

10

4

22

 fig accessing members of objects within a called function

By- Prem Raj Bhatta

11

Downloaded from: http://www.bsccsit.com/

Constructors and Destructors:

Long question:
1. What are constructor and destructor? Explain different types of constructor

used in C++.
2. Create a class called Distance with two data members inch and feet. Provide

Constructor and different member function with the following operations.
 To input data for Distance objects.
 To show the data of Distance objects.
 Member function to add two Distance objects passed as object as function

arguments and then display the result.
3. Create a class called Distance with two data members inch and feet. Provide

Constructor and different member function with the following operations.
 To input data for Distance objects.
 To show the data of Distance objects.
 Member function to add two Distance objects passed as object as function

arguments leaving the result in the third Distance object and then display
the result.

4. Create the class called time that has separate integer member (attribute) data
for hours, minutes, and seconds. One constructor should initialize this data to
0, and another should initialize it to a fixed values. A member function should
display it in 10:34:55 format. The final member function should add the two
objects of type time passed as arguments.
A main program should create two initialize time objects and one not initialize
time object. Then it should add the two initialize value together, leaving the
result in the third time variable. Finally it should display the value of this third
variable.

Short questions:

1. Point out few important characteristics of constructors.
2. Differentiate between constructors and other member functions.
3. Explain the use of destructors. Point out the main differences between

constructors and destructors.
4. Differentiate between parameterized and non-parameterized constructors.
5. Discuss the importance of the constructor.
6. What is the primary role of the constructors?
7. Discuss the primary role of the user-defined constructors with example.

By- Prem Raj Bhatta

12

Downloaded from: http://www.bsccsit.com/

Operator Overloading

6. Operator Overloading
 Operator Overloading is one of the most fascinating features of C++. It is the
mechanism of giving special meanings to an operator. By overloading operators we can
give additional meanings to operators like +, *, -, <=, >= etc. which by default are
supposed to work only on standard data types like ints , floats.
 Example, if str1 and str2 are two character arrays holding strings “well” and
“come” in them then to store “welcome” in third string str3 in C we need to perform the
following operations:
 char str1[]= “wel”;
 char str2[]= “come”;
 char str3[20];
 strcpy(str3, str1);
 strcat(str3,str2);
No doubt this does the desired task but the following have more sense:
 str3 = str1 + str2;
Such a form obviously would not work in C, since we are attempting to apply the +
operator on non-standard data types (string) for which addition is not defined. But C++
permits the + operator to be overloaded such that it knows how to add two strings.
 Even though the semantics of an operator can be expressed, we cannot change its
syntax. When an operator overloaded, its original meaning is not lost. The grammar rules
defined by C++ that govern its use such as the number of operands, precedence and
associatively of the operator remains the same for overloaded operators.
 We can overload (give additional meanings to) all the C++ operators except the
following:

 Class member access operators (. , .*)
 Scope resolution operator (::)
 Size of operator (sizeof)
 Conditional operator (?:)

Syntax for operator overloading: The keyword operator is used for overloading.
return_type operator operator_symbol (arguments)
{
 //body of the function

}
 Operator functions must be either member functions or friend functions. A basis
difference between them is that a friend function will have only one argument for unary
operator and two for binary operator while a member function has no arguments for
unary operator and only one for binary operator.
The process of operator overloading generally involves following steps.

1. Declare a class whose objects are to be manipulated using operators.
2. Declare the operator function, in public part of class. It can either normal member

function or friend function.
3. Define operator function within the body of a class or outside the body of the

class but function prototype must be inside the class body.

By- Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com/

Operator Overloading

Unary Operator Overloading
 An unary operators acts on only one operand. Examples of unary operators are the
increment and decrement operators ++ and -- and the unary minus as in -45.
Syntax:
Return_type operator unary_operator_symbol ()
{

 //body of functions
}

Invoking overloading unary operator:

Prefix form: unary_operator object_name;
Postfix form: object_name unary_operator;

Let us now implement an overloading unary operator-
#include<iostream.h>
#include<conio.h>
class index
{
 int count;
 public:
 index()
 {
 count=0;
 }
 void display()
 {
 cout<<count;
 }
 void operator++()
 {
 ++count;
 }
};
int main()
{
 index c;
 cout<<"C=";
 c.display();
 ++c;
 ++c;
 cout<<"C=";
 c.display();
 getch();
 return 0;
}

By- Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

Operator Overloading

In this program the count of object c is initially set to 0. On encountering the expression
++c it is incremented by 1. The output of the program looks like:
 C=0
 C=2
Internally, the expression ++c is treated as:
c.operator ++ ();
 While calling this function no value is passed to it and no value is returned from
it. The compiler can easily distinguish between the expression ++c and an expression, say
++i, where i might be an integer variable. It can make this distinction by looking at the
data types of the operands. If the operand is a basic type like an int, as in ++i, then the
compiler will use its build-in routine to increment an int. But if the operand is an index
variable (an object), then the compiler will now use our operator ++ () function.

Overloading Unary operator that return a value:
If we have to use overloaded operator function for return a value as:

Obj2=obj1++; //returned object of obj++ is assigned to
 //obj2

//Example: unary operator overloading with return type.
#include<iostream.h>
#include<conio.h>
class index
{
 int count;
 public:
 index()
 {
 count=0;
 }
 void display()
 {
 cout<<count;
 }
 index operator++()
 {
 ++count;
 index temp;
 temp.count=count;
 return temp;
 }
};

By- Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

Operator Overloading

int main()
{
 clrscr();
 index c,d;
 cout<<endl<<"C=";
 c.display();
 ++c;
 cout<<endl<<"C=";
 c.display();
 d=++c;
 cout<<endl<<"C=";
 c.display();
 cout<<endl<<"D=";
 d.display();
 getch();
 return 0;
}
Here the operator ++ () function increments the count in its own objects as before, then
creates the new temp object and assigns count in the new object the same value as in its
own object. Finally it returns the temp object. This has the desired effect. Expression like
++c now return a value, so they can be used in other expressions such as
d= ++c;
In this case the value returned from ++c is assigned to d.
Program’s output would look like this:
 C=0
 C=1
 C=2
 D=2
In our program we created a temporary object called temp. Its purpose was to provide a
return value for the ++ operator. We could have achieved the same effect using the
nameless temporary object.

Nameless temporary object : A convenient way to return an object is to create a
nameless temporary object in the return statement itself . In the above program, modify
class definition by
public :

index() {count=0;}
……….
…………
index operator++()
{

++count;
 return index(count);
}

Note that the operator ++() function has changed. In this function the statement,
 return index(count);
creates an object of type index. This object has no name.

By- Prem Raj Bhatta 4

Downloaded from: http://www.bsccsit.com/

Operator Overloading

Note : When ++ or – is used in its overloaded role, there is no difference between pre and
post operations . i.e. object ++ and ++object has the same role.
 i.e. obj2=++obj1; and obj2=obj1++; has exactly same effect

So to distinguish postfix and prefix operation C++ provides additional syntax to express
this prefix and postfix operation. The operator function.

Operator++ () above is defined to indicate prefix and postfix
operation as

// prefix operation
index operator ++ ()
{
 return index(++count); // object is created with ++count

 // i.e. new value of count and
}

// postfix operation
index operator ++ ()
{
 return index(count++) // object is created with count++

 // i.e. old value of count and value is
 //returned.

}
We can give increment role to -- operator and decrement role to ++ operator
defining operator function as
// decrement role to ++
index operator ++()
{
 count--; // decrements
 return index(count);
}

// increment role to --
index operator --()
{
 count++;
 return index(count); // increments

}

By- Prem Raj Bhatta 5

Downloaded from: http://www.bsccsit.com/

Operator Overloading

Binary operator overloading
 Binary operators can be overloaded as unary operator. The syntax for overloading
the biary operator is:
retrun_type operator operator_symbol(arg)
{
 //body of function.
}
Invoking binary operator:
Object1 operator object2;
 The binary overloaded operator function takes the first object as an implicit
operand and the second operand must be passed explicitly. The data members of the first
object are accessed without using the dot operator whereas, the second argument
members can be accessed using the dot operator if argument is an object, and otherwise it
can be accessed directly.
The following examples illustrate the overloading of binary operators:

• Distance operator +(Distance d);
• Void Distance operator +(Distance d);
• int Distance operator + (Distance d);

Example:
//Program to illustrate the binary operator overloading.
class Distance
{
 int feet;
 float inches;
 public:
 Distance(){}
 Distance(int ft, float in)
 {
 feet=ft;
 inches=in;
 }
 void display()
 {
 cout<<feet<<”\’”<<inches<<”\””;
 }
 Distance operator +(Distance d)
 {
 Distance temp;
 temp.inches=inches+d.inches;
 if(temp.inches>=12.0)
 {
 temp.inches-=12.0;
 temp.feet+=1;
 }
 temp.feet+=feet+d.feet;
 return temp;

By- Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

Operator Overloading

 }
};
void main()
{
 Distance d1(11,7.25);
 Distance d2(10,8.75);
 Distance d3;
 d3=d1+d2;
 d3.display();
}
We would agree that the statement
 d4=d1+d2+d3;
Is more intuitive than the statement:
 d4.add_dist (d1, d2.add_dist (d3));
When the operator + () function is called, the object d2 is passed to it and is collected in
the object d. As against this the object d1 gets passed to it automatically. This becomes
possible because the statement d3= d1 + d2 is internally treated by the compiler as
 d3. d1.opeator + (d2);

Concatenating strings with overloaded + operator

In C, + operator can not concatenate two strings. In C++ it is possible to use + operator to
concatenate two strings using overloaded + . The original mining of + can not be altered
for basic data type but we are giving additional meaning to this +.
//String concatenation using + operator
#include<iostream.h>
#include<string.h>
#include<conio.h>
class String
{
 private:
 char str[40];
 public:
 String()
 {
 strcpy(str," ");
 }
 String(char *mystr)
 {
 strcpy(str,mystr);
 }
 void display()
 {
 cout<<str;
 }
 String operator +(String s)
 {
 String temp;
 temp=str;
 strcat(temp.str,s.str);
 return temp;

By- Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

Operator Overloading

 }
};//end of class String

void main()
{
 String s1="Tribhuvan";
 String s2="University";
 String s3;
 s3=s1+s2;
 s1.display();cout<<" + ";
 s2.display(); cout<<" = ";
 s3.display();
 getch();
}

Overloaded relational operator

The relational operators can also be overloaded as other binary operators to
extend their semantics. The following example shows the ‘>’ operator overloading to use
it for comparison of two user defined objects.
Example:
//overloading relational operator
#include<iostream.h>
#include<stdlib.h>
#include<conio.h>

class money
{
 private:
 int rs; float ps;
 public:
 money(){rs=0;ps=0.0;} //no argument constructor
 money(int r,float p)
 {
 rs=r; ps=p;
 }

 void show()
 {
 cout<<"Rs. : "<<rs<<" Ps. "<<ps;
 }
 void get()
 {
 cout<<"Enter Rs.:";cin>>rs;
 cout<<"Enter Ps.:";cin>>ps;
 }
 int operator>(money);
}; //end class

//definition of > outside the class definition
int money::operator>(money m2)
{
 float mm1=rs+ps/100;
 float mm2 = m2.rs+m2.ps/100;
 return(mm1>mm2)?true:false;

By- Prem Raj Bhatta 8

Downloaded from: http://www.bsccsit.com/

Operator Overloading

}
void main()
{
 money m1;
 m1.get();
 money m2;
 m2.get();
 cout<<"Amount 1:";m1.show();
 cout<<endl<<"Amount 2:";m2.show();
 if(m1>m2)
 cout<<endl<<"Amount 1 is greater than amount2";
 else
 cout<<endl<<"Amount 1 is less than to amount2";
 getch();
}

Overloading equality operator
//overloading == operator
#include<iostream.h>
#include<conio.h>
class ratio
{
 int num, den;
 public:
 ratio(){}
 ratio(int n, int d) {num =n;den=d;}

 void get()
 {
 cout<<"Nr:";cin>> num;
 cout<<"Dr:";cin>>den;
 }

int operator==(ratio&r)
 {
 return (num*r.den==den*r.num);
 }
};
void main ()
{
 ratio r1;
 r1.get();
 ratio r2;
 r2.get();
 if(r1==r2)
 cout<<"Equal Ratio";
 else
 cout<<"Unequal Ratio";
 getch();
}

Rules for overloading operators

• Only existing operators can be overloaded. New operators cannot be created.
• The overloaded operator must have at least one operand that is of user-defined

type.

By- Prem Raj Bhatta 9

Downloaded from: http://www.bsccsit.com/

Operator Overloading

• We cannot change the meaning of an operator. That is, we cannot redefine the
plus (+) operator to subtract one value from other.

• Overloaded operators follow the syntax rules of the original operators. That
cannot be overridden.

• As described above, all operators cannot be overloaded.
• Unary operators, overloaded by means of a member function take no explicit

arguments and return no explicit values. But, those overloaded by means of friend
function take one argument.

• Binary operators, overloaded by means of a member function take one explicit
argument. But, those overloaded by means of friend function take two argument.

By- Prem Raj Bhatta 10

Downloaded from: http://www.bsccsit.com/

Data Conversion

7. Data Conversion
 The = operator will assign a value from one variable to another. The type of data
to the right of an assignment operator is automatically converted into the type of the
variable on the left.
Example: int a;
 foat b = 3.1416;
 a= b;
 Converts “b” to an integer before its value is assigned to “a”. So the fractional
part is truncated. So for built in data type, data conversion is done automatically.
For user defined data types like:
 dist3 = dist1 + dist2; //dist1, dist2, dist3 are
class type objects
When the objects are of the same class type the operation of addition and assignment are
carried out smoothly and the compiler does not make any errors. The value of all the data
members of the right hand objects are simply copied into the corresponding members of
the object on the left hand. What if one of the operand is an object and the other is a built
in type variable? Or what if they belong to two different classes?
 In case the data items are of different types, data conversion interfaces must be
explicitly specified by the user.
 Following four types of situations might arise in the data conversion between
incompatible types:

1. Conversion between basic data types
2. Conversion between built in types to class types.
3. Conversion between class types to built in data types.
4. Conversion between one class types to another class type.

Conversion between basic data types:
The compiler has several built in routines for the conversion of basic data types such as
char to int, int to float, float to double etc. this features of the
compiler which performs conversion of data without the user intervention is known a
implicit type conversion.
Example: float pi;
 int a;
 pi = a;
The compiler calls a special routine to convert the value of a, which is integer to a
floating point format so it can be assigned to pi.
 The compiler can be instructed explicitly to perform type conversion operators
known as typecast operators. Example to convert int to float, the statement is—
 Pi = (flaot) a;
This is C style and also valid in C++.
In C++ the above statement can be written as:
 Pi = float (a);

By- Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com/

Data Conversion

Conversion form built into class type:

To convert data from a basic type to a user defined type, the conversion function must be
defined in user defined object’s class in the form of constructor. The constructor function
takes a single argument of basic data type.
Syntax:
constructor (Basic type)
{
 //converting statements
}
Example:
class Hour
{
 int hr;
 public:
 Hour()
 {
 hr = 0;
 }
 Hour (int m)
 {
 hr = m/60;
 }
 Void display()
 {
 cout<<”Hour = ”<<hr;
 }
};
Void main()
{
 Hour h1;
 int m;
 cout<<”Enter minutes:”;
 cin>>m;
 h1 = m; //m is basic data and

// h1 is user defined data
 //convert from basic to user defined data.
 h1.display();
}

Conversion form class type into built type:
The conversion function must be defined in user defined objects class in the form of the
operator function. The operator function is defined as an overloaded basic data types
which takes no arguments. It converts the data members of an object to basic data types
and returns a basic data items.

By- Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

Data Conversion

Syntax:
Operator basic_data ()
{
 //conversion statements
}
Examples:
class Hour
{
 int hr;
 public:
 Hour()
 {
 hr = 0;
 }
 Operator int()
 {
 int m;
 m = hr * 60;
 return (m);
 }
 Void getdata()
 {
 cout<<”Enter the hours:”;
 cin>> hr;
 }
};
Void main()
{
 Hour h1; // h1 is user defined data
 float m; //m is basic data
 h1.getdata()
 m = h1 //convert from basic to user defined data.
 Cout<<”Minutes = ”<<m;
}

Conversion between objects of different classes:
The C++ compiler does not support automatic data conversion between objects of
classes.
class classX
{

};
class classY
{

};

By- Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

Data Conversion

objX = objY;
ObjX is an object of class classX and objY is object of class classY. The classY type is
converted to classX type data and the converted value is assigned to objX. Since the
conversion takes place from classY to classX, classY is called source and classX is called
destination class.
 The conversions between objects of different classes can be carried out by either
one argument constructor or an operator function. The choice depends on whether we put
the conversion routine in the destination class or in the source class.

1. Conversion Routine in Source Objects: Operator Functions
The conversion routine in the source object’s class is implemented as an operator
function.
Syntax:
class classX //destination class
{

};
class classY //source class
{

 public:
 operator classX()
 {
 //code for conversion from
 //classY to classX
 }
};
For assignment statements such as:
objx = objY ;
ObjY is the source object of the classY and objX is the destination object of the
classX. The conversion operator classX() exist in the source object’s class.
Example: conversion polar coordinate to Rectangular coordinate using routine in
polar class (source class)
class Rec
{
 double xco, yco;
 public:
 Rec()
 {
 xco = 0.0;
 yco = 0.0;
 }
 Rec(double x, double y)
 {
 xco = x;
 yco = y;

By- Prem Raj Bhatta 4

Downloaded from: http://www.bsccsit.com/

Data Conversion

 }
 void display()
 {
 cout<<”(”<<xco<<”,”<<yco<<”)”;
 }
};
class Polar
{
 double radius, angle;
 public:
 polar()
 {
 radius = 0.0;
 angle = 0.0;
 }
 operator Rec ()
 {
 double x = radius*cos(angle);
 double y = radius*sin(angle);
 return Rec(x,y);
 }
 void display()
 {
 Cout<<”(”<<radius<<”,”<<angle<<”)”;
 }
};
void main()
{
 Rec r;
 Polar p(5.0,.785398);
 r = p;
 cout<<”POLAR COORDINATE:”;
 p.display();
 cout<<”RECTANGULAR COORDINATE:”;
 r.display();
}

2. Conversion Routine in Destination Object: Constructor Function
The conversion routine can be defined in the destination class as a one argument
constructor.
Syntax:
class classY //source class
{

};
class classX //destination class
{

By- Prem Raj Bhatta 5

Downloaded from: http://www.bsccsit.com/

Data Conversion

 public:
 classx(classY objY)
 {
 //code for conversion function
 }
};
PROGRAM CONVERTING POLAR TO REC USING ROUTINE IN
REC(DESTINATION CLASS)
class Polar
{
 double radius, angle;
 public:
 polar()
 {
 radius = 0.0;
 angle = 0.0;
 }
 polar (double r, double a)
 {
 radius = r;
 angle = a;
 }
 void display()
 {
 Cout<<”(”<<radius<<”,”<<angle<<”)”;
 }
 double getradian ()
 {
 return radius;
 }
 double getangle()
 {
 return angle;
 }
};
class Rec
{
 double xco, yco;
 public:
 Rec()
 {
 xco = 0.0;
 yco = 0.0;
 }
 Rec(polar p)
 {

By- Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

Data Conversion

 double r = p.getdata ();
 double a = p.getdata ();
 xcor = r*cos(a);
 ycor = r*sin(a);
 }
 void display()
 {
 cout<<”(”<<xco<<”,”<<yco<<”)”;
 }
};

void main()
{
 Rec r;
 Polar p(5.0,.785398);
 r = p;
 cout<<”POLAR COORDINATE:”;
 p.display();
 cout<<”RECTANGULAR COORDINATE:”;
 r.display();
}

By- Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

Inheritance

8. Inheritance

Inheritance is the most powerful feature of OOP. Inheritance is the process of creating
new classes, called derived classes, from existing classed. These existing classes are
called base classes. The derived classes inherit all the capabilities of the base classes but
can add new features and refinements of its own. By adding these refinements the base
class remains unchanged.

• Inheritance permits code reusability.
• Inheritance is like a child inheriting the features of its parents.
• It is a technique of organizing information in a hierarchical (tree) form.
• A base class is also called ancestor, parent or super class and derived class is also

called as descendent, child, or subclass.

Feature C

Feature B

Feature A

Base class

 Arrow means derived from

 Defined in derived class

Derived class

 Defined in base class
 Also accessible.

Feature D

Feature A

Feature B

Feature C

Protected data members: Instead of private and public members there is another type
protected member in a class. The purpose of making data member protected in a class is
to make such member accessible from the function of the derived class. No other class
than derived class function can access the protected data of a base class.
Derived class declaration: The derived class inherits all the featured of its parent class
and adds its own new features.

By- Prem Raj Bhatta

1

Downloaded from: http://www.bsccsit.com/

Inheritance

The syntax of declaration of derived class is:
class derive class : <private/ public> base class
{
 //member of derived class
 //other members
}
Syntax:
 class A class B : public A // public derivation
 { {

private :
 // data members ; //members of B
 protected : } ;
 //data members ;
 public ; class C : private A // private derivation
 //function members ; {

 } ; //members for c

} ;

class D : A // private derivation default
{
 // member of D
} ;
Example:
// an example of inheritance
#include<iostream.h>
#include<conio.h>

class parent //base class
{
 protected: //if private count will be inaccessible to derived class
 int count;
 public:
 parent () {count=0;} //zero argument constructor
 void display()
 {
 cout<<"count="<<count<<endl;
 }

void operator ++()//unary operator overloading
 {
 count++;
 }

};
class child : public parent //derived class
{
 public:
 void operator --()
 {
 count--;

By- Prem Raj Bhatta

2

Downloaded from: http://www.bsccsit.com/

Inheritance

 }
};

void main()
{
 child c;
 ++c;
 ++c;
 c.display();
 --c;
 c.display();
 getch();
}
output:
 count=2
 count=1
Here we have first declared a base class called parent and then derived a class called child
from it. Child inherits all the features of the base class parent. Child doesn’t need a
constructor or the operator ++ () function, since they are already present in the
base class.
The first line of the child class,
class child : public parent
Specifies that the child has been derived from the base class parent.
 A protected member (i.e. int count) is introduced in base class. A private member
cannot access by objects of a derived class. The protected members can be accessed by
the member functions of derived class.
Example: operator -- () is defined in derived class child which can access the protected
data “count” of class parent.
It is not possible to define an object of base class that us – overloaded operator: since – is
member of derived class.

Inheritance and member Accessibility:

• Private members of a base class cannot be inherited directly to the derived class.
The private member of a class is accessible only to the member function of its
own.

• Making members of base class protected, they are accessible to the member
function of derived class.

• A protected member can be considered as a hybrid of a private and a public
member. Like private members, protected are accessible only to its class member
function and they are invisible outside the class. Like public members, protected
members are inherited by derived classes and also accessible to member function
of derived class.

• A public member is accessible to members of its own class, member of derived
class and even outside the class.

By- Prem Raj Bhatta

3

Downloaded from: http://www.bsccsit.com/

Inheritance

Public and private inheritance:
 The visibility mode in the derivation of new class can be either public or private.

Public inheritance: when a class is derived publicly from its base class, the object of
derived class can access public member of base class.

Private inheritance: when a class is derived privately, the object of derived class
cannot access public member functions of the base class. Since objects can never access
private or protected members of a class, the result is that no member of the base class is
accessible to objects of the derived class.
Example

/*public or private inheritance*/
#include<iostream.h>
#include<conio.h>

class A
{
 private :
 int pvtdataA ;
 protected :
 int protdataA ;
 public:
 int pubdataA ;
} ;

class B : public A // publicly derived
{
 public :
 void function ()
 {
 int a ;
 //a = pvtdataA ; // error: not accessible.
 a = protadataA ; // ok
 a = pubdataA ; // ok
 }
} ;

class C : private A // privately derived.
{
 public :
 void funct ()
 {
 int a ;
 //a = pvtdataA ; // Error : not accessible
 a = protdataA ; // ok
 a = pubdataA ; // ok
 }
};

void main()
{
 int a ;
 B objB ;

By- Prem Raj Bhatta

4

Downloaded from: http://www.bsccsit.com/

Inheritance

 //a = objB.pvtdataA ; // error : not accessible
 //a = objB.protdataA ; // error : not accessible
 a = objB.pubdataA ; // ok

 C objC ;
 //a = objC.pvtdataA; // Error; not accessible
 //a = objC.protdataA; // error; not accessible
 //a = objC.pubdataA; // error; not accessible A is private to C
 getch();
}

The program specifies a base class, A, with private, protected, and public data items. Two
classes, B and C, are derived from A. B is publicly derived and C is privately derived.
Functions in the derived classes can access private or protected members of the base
class. Objects of the derived classes cannot access private or protected members of the
base class.
Objects of the publicly derived class B can access public members of the base class A,
while objects of the privately derived class C cannot. They can only access the public
members of their own derived class.
 Following figure shows the relationship and accessibility of members in private
and public inheritance.
 Class A

Class B: public A Class C: private A

obj A

obj C

Protected

Public

Private

Protected

Public

Private

Protected

Public

obj B

Private

By- Prem Raj Bhatta

5

Downloaded from: http://www.bsccsit.com/

Inheritance

Level of Inheritance

 The level of inheritance refers to the length of its path from the root (top base class). A
base class itself might have been derived from other classes in the class hierarchy.
Inheritance is classified into the following forms based on the levels of inheritance and
interrelationship among the classes in their hierarchy.

1. Single Inheritance: When a class is derived from only one base class, such derivation
is called single inheritance. In single inheritance, base class and derived class exhibits
one to one relationship. Following diagram exhibits the point

 A

 B

B is derived from class A.
class A class B : A
{ ... { ...
} ; } ;

2. Multiple inheritances: Derivation of a class from two or more base class is called
multiple in heritance. In multiple inheritances, the derived class inherits some or all the
features of base classes from which it is derived. Following figure shows the multiple
inheritances.
 Class A Class B Class C: A , B

{ { ... { ...
} ; } ; } ;

 A BA

C

3. Hierarchical Inheritance: When several (more than one) classes are derived from
singled base class z-e. Feature of one class may be inherited by more than class, and then
it is called hierarchical inheritance. Following figure shows this type of inheritance.

B C D

A

By- Prem Raj Bhatta

6

Downloaded from: http://www.bsccsit.com/

Inheritance

Class A Class D : A
{….. { ...
}; };

4. Multilevel inheritance: The derivation of a class from another derived class called
multilevel inheritance. In figure below, we can see multilevel inheritance

Class B : A Class C : A
{ {
} ; };

 e.g

Animal

Mammal

a serves as base class for derived class B, which is
intern serves as base class for class C. The class B is
known as intermediate base class and the chain ABC
is inheritance path.

 Dog

B

A

C

5. Hybrid inheritance: Derivation of class involving more than one form of inheritance
is known as hybrid in heritance see fly.

A

CB

D

A

B C

D

A

B DC

E

[Multilevel, Hierarchical, multiple]
 → Hybrid

Hybrid (multilevel + multiple)

6. Multi-path inheritance: Derivation of a class from other derived classes, which are
derived from same base class, is called multi-path inheritance. Fly.

 A

A

A
A

By- Prem Raj Bhatta

7

Downloaded from: http://www.bsccsit.com/

Inheritance

Derived Class Constructors:
 The derived class need not have a constructor as long as the base class has a no-
argument constructor. If base class has constructor with arguments (one or more) then
derived class must have a constructor explicitly defined such that it passes arguments to
the base class constructor.
 In the application of inheritance, objects of derived class are usually created instead of
the base class. So derived class should have constructor and pass arguments to the
constructor of base class. When an object of a derived class is created, the constructor of
the base class is executed first and later the constructor of the derived class is executed.

 Constructor only in base class:
#include <iostream.h >
class B
{
 public:
 B()
 {
 cout <<" No argument constructor of base class executed";
 }
};

class D : public B // publicly derived
{
 public:
};

void main ()
{
 D obj1 ; // accesses base constrictor
}

Run : No argument constructor of base class executed.

Similarly, when constructor is present only derived class it is invoked at the object
instantiation of derived class

Constructor in base and derived class:

class B
{
 public:
 B(int a) { cout <<" One argument constructor in base class B";}
};

class D : public B
{

D(int a)
 {cout <<" One constructor in derived class D";}

};

By- Prem Raj Bhatta

8

Downloaded from: http://www.bsccsit.com/

Inheritance

void main ()
{
 D objd (3);
}
The compilation generates error like:
Cannot find "default” constructor to initialize base class 'B'

To overcome this error, explicit invocation of a constructor of base class in derived class
constructor is needed.
class D : public B
{

 public:
 D(int a) : B (a)

 {cout <<" One arg .Constrictor in derived class D ";}
};

Run : one – arg constructor in base class 'B'
 one – arg constructor in derived class D.
Example:
//derived class constructor
#include<iostream.h>
#include<conio.h>

class one //base class
{
 protected:
 int count;
 public:
 one() {count=0;} //zero argument constructor
 one(int i) {count=i;}

 void display()
 {
 cout<<"count: "<<count<<endl;
 }
 void operator ++()//unary operator overloading
 {
 count++;
 }

};
class two: public one //derived class
{
 public:
 two(): one()
 { }
 two(int i): one(i)
 { }
 void operator --()
 {
 count--;
 }
};

By- Prem Raj Bhatta

9

Downloaded from: http://www.bsccsit.com/

Inheritance

void main()
{
 two i1;
 two i2(200);
 i1.display(); //displays 0
 i2.display(); //displays 200
 ++i1;
 ++i1;
 i1.display(); //displays 2
 --i2;
 i2.display(); //displays 199
 getch();
}

Constructor in multiple inherited classes with explicit invocation
#include<iostream.h >
class base1 // base class.
{
 public :
 base1()
 { cout << " No arg constructor in abase1 " ; }
};

class base2
{
 public :
 base2()
 {cout <<" No a rrg Constructor in base2 "; }
};

class derived : public base1, public base2
{
 public :
 derived():base2(), base1() // explicit call
 { cout <<" No arg constructor in derived class " ;}
};

void main ()
{
 derived obj ;
}

Run : No arg constructor in base1
 No arg constructor in base2
 No arg constructor in derived class

 Here in above program, class derived is derived publicly from class base1 and base2 in
order. Constructors of base classes are invoked explicitly in derived class as
 derived () : base2 (), base1 ()
The order of execution of constructor is same as order as order of inheritance rather than
order of explicit call.

By- Prem Raj Bhatta

10

Downloaded from: http://www.bsccsit.com/

Inheritance

Constructor invocation for data member initialization:

In multiple inheritances, the constructors of base classes are invoked first, in the order in
which they appear in the declaration of the derived class.
 In multilevel inheritance, constructors are invoked in the order of inheritance. For
initialization of data members, the derived class object are created and values are
supplied either by object of derived class or a constant value can be mentioned in the
definition of the constructor.

The syntax of defining constructor in derived class
derived class (arg – list) : Base2 (arg – list2) , , Base N (arg – list N)
{
 // body of derived class constructor

}

Ambiguity Resolution in Multiple inheritances:
 Ambiguity is a problem that surfaces in certain situation involving multiple inheritances.
 • Base classes having function with the same name.
 • The class derived from these base classes is not having a function with the name
 as those of its base classes.
 • Member of a derived class or its objects referring to a member, whose name is
 the same as those in base classes
 The problem of ambiguity is resolved using the scope resolution operator as shown in
figure.

 Member access operator
Objectname.BaseclassName::MemberName(.......)
 Function to be invoked
 Base class in which member is defined

 Instance of derived class
Example: of Ambiguity
//amboguty in member access
#include<iostream.h>
#include<conio.h>

class A
{
 public:
 void show() { cout<<" class A "; }
};
class B
{
 public:
 void show() { cout<<" class B "; }
};
class C : public A , public B
{

By- Prem Raj Bhatta

11

Downloaded from: http://www.bsccsit.com/

Inheritance

};
void main()

{
 C objC; // object of class C
 //objC.show() ; // ambiguous....error
 objC.A::show() ; // ok invokes show() in class A.
 objC.B::show() ; // ok
 getch();
}

The statement objC.show(); is ambiguous as compiler has to choose A::show() or B::
show(). It can be resolved using the scope resolution operator as follows
 objc.A::show();
refers to the version of show () in the class A.
Another example:

A
class A

B C

D

{ public :
 void func () ;
};
class B : public A.
{
 //......
};
class C :public A
{
 //
};
class D : public B, public C
{
 //………..
};
void main ()
{

D obj D;
 obj D. fun () ; // ambiguous :
}

Overriding Member Functions:
Defining a functions in derived class that have same name as those in base class is known
as function (Member function) overriding. The member function in derived class
overrides the function.
#include <iostream.h>
#include <conio.h>
class publication
{
 char title[50];
 float price;

By- Prem Raj Bhatta

12

Downloaded from: http://www.bsccsit.com/

Inheritance

 public:
 void getdata()
 {
 cout<<"Enter title:";cin>>title;
 cout<<"Enter price:";cin>>price;
 }
 void putdata()
 {
 cout<<"\ntitel:"<<title;
 cout<<"\nprice:"<<price;
 }
};
class book:public publication
{
 private:
 int pages;
 public:
 void getdata()
 {
 publication::getdata();
 cout<<"Enter the pages:";cin>>pages;
 }
 void putdata()
 {
 publication::putdata();
 cout<<"\nPages:"<<pages;
 }
};
class CDROM : public publication
{
 private:
 float time;
 public:
 void getdata()
 {
 publication::getdata();
 cout<<"Enter the time:";cin>>time;
 }
 void putdata()
 {
 publication::putdata();
 cout<<"\nTime is:"<<time;
 }
};
void main()
{
 book b1;

By- Prem Raj Bhatta

13

Downloaded from: http://www.bsccsit.com/

Inheritance

 CDROM c1;
 b1.getdata();
 c1.getdata();

 b1.putdata();
 c1.putdata();
 getch();
}

This is the solution of the Question:
Q: A company that makes both books and CR-ROM version of its multimedia works.
Create a class called publication which stores the title and price of publications. From
this class derive another two class book, which adds a page count and CD-ROM which
adds a playing time in minutes. Each of these classes should have some member functions
to get the data from keyboard and display the data.
 Write a main routine to create objects and storing the data. The main routine also
displays the data.

Containership:
Inheritance is the mechanism used to obtain the “a kind of” relation. That is, if class B is
derived from a class A, then “B is a kind of A”. C++ supports another form of
relationship, called containership. E.g. books are made of chapters, ocean have whales,
dolphins etc. it allows us to view an object as a collection of another objects.
class A { };
class B { };
class C
{
 A obja; //obja is objects of class A
 B objb; //objb is objects of class B

};
Since, the class C contains instance of class A and class B, containership can be viewed
as nesting of class i.e. class within class. And often referred to as “has a” relationship.

By- Prem Raj Bhatta

14

Downloaded from: http://www.bsccsit.com/

Inheritance

//Example of containership:
class A
{
 int a;
 public:
 A(){ a = 0; }
 A(int x) { a = x; }
 Void display()
 {
 cout<<”a = ”<<a;
 }
};
class B
{
 int b;
 public:
 B(){ b = 0; }
 B(int x) { b = x; }
 Void display()
 {
 cout<<”b = ”<<b;
 }
};
class C
{
 A obja;
 B objb;
 int c;
 public:
 C():obja(),objb()
 {
 c = 0;
 }
 C(int x1,int x2,int x3):obja(x1),objb(x2)
 {
 c = x3;
 }
 void display()
 {
 Obja.display();
 Objb.display();
 Cout<<”c = ”<c;
 }
};
void main()
{
 C C1;

By- Prem Raj Bhatta

15

Downloaded from: http://www.bsccsit.com/

Inheritance

 C C2(2,3,4);
 C1.display();
 C2.display();
}

Abstract Classes
The objects created are often the instance of a derived class but not the base class. The
base class is just the foundation for building new classes and hence such classes are
called abstract base classes or abstract classes. An abstract class is one that has no
instances and is not designed to create objects. It is only designed to be inherited.
class One
{
 private:
 ………….
 public:
 ……………
};
class Two
{
 public:
 …………
};

void main()
{
 Two t1;
}

The class One serves as framework for building the derived class and it is treated as a
member of the derived class Two. The instance of class One is not created in the function
main(), however it provides a framework for the class Two, so class One can be regarded
as Abstract class.

By- Prem Raj Bhatta

16

Downloaded from: http://www.bsccsit.com/

 Function

9. Functions
Abstract Classes
The objects created are often the instance of a derived class but not the base class. The
base class is just the foundation for building new classes and hence such classes are
called abstract base classes or abstract classes. An abstract class is one that has no
instances and is not designed to create objects. It is only designed to be inherited.

class One
{
 private:
 ………….
 public:
 ……………
};

class Two
{
 public:
 …………
};

void main()
{
 Two t1;
}

The class One serves as framework for building the derived class and it is treated as a
member of the derived class Two. The instance of class One is not created in the function
main(), however it provides a framework for the class Two, so class One can be regarded
as Abstract class.

Friend function:
The concept of encapsulation and data hiding dictate that non-member functions should
not be allowed to access an object’s private and protected members. This policy is, if you
are not a member you cannot get it. Sometimes this feature leads to considerable
inconvenience in programming. If we want to use a function to operate on objects of two
different classes, then a function outside a class should be allowed to access and
manipulate the private members of the class. In C++, this is achieved by using the
concept of friend function.
Private member of a class cannot be accessed from outside the class. Non member
function of a class cannot access the member of a class. But using friend function we can
achieve this.

The function declaration must be prefixed by the keyword friend whereas the function
definition must not. The function could be defined anywhere in the program similar to
any normal C++ function. Function definition does not use either the keyword friend or
scope resolution operator ::
 A friend function is not a member of any classes but has the full access to the member of
class within which it is declared as friend.

By- Prem Raj Bhatta

1

Downloaded from: http://www.bsccsit.com/

 Function

Class test
 {

……
…….
…….

 Public:
……….
……….
friend void friendfunc();//declaration

};
 A friend function has the following characteristics.

• It is not in the scope of the class within which it has been declared as friend.
• Since it is not in the scope of the class, it cannot be called using the object of that

class. It can be invoked like a normal C++ function without the help of any object.
• Unlike member functions, it cannot access member name directly and has to use

an object name and dot operator with each member name. i.e. t1.x.
• It can be declared as public or private part of the class, the meaning is same.
• Normally, it takes objects as arguments.

Friends as bridges
If we want to operate on objects of two different classes, the function may take objects of
two classes as arguments, and operate on their private data. For this we have to make use
of friend functions that can act as bridge between two classes.

// Bridging classes with friend fuctions
#include<iostream.h>
#include<conio.h>
class second; //declaration like function prototype
class first
{
 private:
 int data1;
 public:
 void setdata(int x)
 { data1=x;}
 friend int sum(first a, second b);//friend function
};
class second
{
 private:
 int data2;
 public:
 void setdata(int x)
 { data2=x;}
 friend int sum(first a, second b);//friend function
};

int sum(first a, second b)
{
 return (a.data1 + b.data2);
}

By- Prem Raj Bhatta

2

Downloaded from: http://www.bsccsit.com/

 Function

void main()
{
 first a;
 second b;
 a.setdata(15);
 b.setdata(10);
 cout<<"sum of first and second is:"<<sum(a, b);//displays 25
 getch();
}

Example
// an example of friend function
#include<iostream.h>
#include<conio.h>
class time
{
 private:

int hrs,min;
 public:
 void gettime(int h,int m)
 {hrs=h;min=m;}
 void puttime()
 {cout<<hrs<<":"<<min;}
 friend time sum(time, time);//return object of time

};
//definition of sum.
time sum(time t1, time t2)
{
 time t3;
 t3.min=t1.min+t2.min;
 t3.hrs=t3.min/60;
 t3.min=t3.min%60;
 t3.hrs+=t1.hrs+t2.hrs;
 return t3; //returns object t3;
}
void main()
{
 time T1,T2,T3;
 T1.gettime(2,56);
 T2.gettime(3,45);
 T3=sum(T1, T2);//friend function
 cout<<"now the time value is"<<endl;
 T1.puttime(); cout<<"+";
 T2.puttime(); cout<<"=";
 T3.puttime();
 getch();
}

Friend Classes
The member function of a class can all be made friends at the same time when we make
the entire class a friend.
// an example of friend class
#include<iostream.h>
#include<conio.h>

By- Prem Raj Bhatta

3

Downloaded from: http://www.bsccsit.com/

 Function

class first
{
 private:
 int data1;
 public:
 void setdata(int x)
 { data1=x;}
 friend class second; //class second can access private data
};
class second
{
 public:
 void func1(first a)
 {cout<<"\n data1="<<a.data1;}

void func2(first a)
 {cout<<"\n data1="<<a.data1;}
};

void main()
{
 first a;
 second b;
 a.setdata(15);
 b.func1(a);
 b.func2(a);
 getch();
}

Abastract classes and pur virtual function:
 When the objects of base class are never instantiated, such a class is called
abstract base class or simply or simply abstract class. Such a class only exists to act as a
parent of derived classes from which objects are instantiated. It may also provide
interface for class hierarchy.
 To make a class abstract so that object instantiation is not allowed and derivation
of child classes are allowed, at least one pure virtual function should be placed in the
class.
 A pure virtual class is one with the expression = O is added to the declaration of
virtual function. The syntax of declaration of pure virtual function and making a class
abstract is:
 class A

{
 public:
 virtual void show() = 0 ; // pure virtual function

};
 Here class A become abstract since there is presence of pure virtual function show
(). The expression = 0 has no any other meaning the equal sign = 0 does not assign 0 to
function show (). It is only method to tell the compiler that show () is pure virtual
function hence class A is abstract class.

All classes with pure virtual function are known as concrete classes.
 A pure virtual function has following properties.

By- Prem Raj Bhatta

4

Downloaded from: http://www.bsccsit.com/

 Function

1. A pure virtual function has no implementation in the base class.
2. It acts as an empty bucket (virtual function is partially filled bucket) that the derived
 class are supposed to fill it.
3. A pure virtual function can be invoked by its derived class.

An example:
#include<iostream.h>
 class Absperson
 {
 public:
 virtual void service1(int); // normal virtual function
 virtual void service2(int)=0; //pure virtual function
 };
void Absperson :: service1 (int n)
{ service2 (n);
}
class person: public Absperson
{
 public:
 void service2 (int n) ;
};
void person :: service2 (int n)
{
cout <<" The no.of.years of service:" << (60-n) << endl;
}
void main ()
{
 person father, son;
 father. service1 (50);
 son. service2 (20);
}
output:
 The no. of years of service: 10
 The no. of years of service: 40

Example 2

#include<iostream.h>
 class Base
{
 public:
 virtual void show()=0 ; // pure virtual function
};
class Derived1 : public Base
{
 public :
 void show() { cout <<" Derived1 \n"; }

By- Prem Raj Bhatta

5

Downloaded from: http://www.bsccsit.com/

 Function

};
class Derived2 : public Base // derived class 2
{
 public:
 void show() { cout <<" Derived2 \n" ; }
};
void main()
{
 // Base baseobj ; // can't make object of abstract
class
 Base * ptr[2] ; // array of ptr of base
class.
 Derived1 dv1 ; // object of derived1
 Derived2 dv2 ; // object of derived2.
 ptr[0] = &dv1 ;
 ptr[1] = &dv2;

 ptr[0]->show();
 ptr[1]->show();
} output : Derived1
 Derived2

The pure virtual function in the base class must be override in all its derived class

from which we want to instantiate objects. If a class doesn't override pure virtual
function, it itself becomes abstract and objects cannot be instantiated.

Virtual destructors: Since destructor are member functions, they can be made virtual
with placing keyword virtual before it. The syntax is
 Virtual ~ classname () ; // virtual destructor.

• The destructor in base class should always be virtual. If we use delete with a base class
object to destroy the derived class object, then it calls the delete calls the member
function destructor for base class. This causes the base class object to be destroyed.
Hence making destructor of base class virtual, we can prevent such mis-operation.
Example:
#include<iostream.h>
class Base
{
 public:
 ~Base () ; // non virtual
 //virtual ~Base()
 {cout<<"Base Destryed\n";}
};
 class Derv1:public Base
 {
 public:

By- Prem Raj Bhatta

6

Downloaded from: http://www.bsccsit.com/

 Function

 ~Derv1()
 {
 cout<<"Derived1 destroyed\n";
 }
 };
 class Derv2:public Base
 {
 public:
 ~Derv2()
 {
 cout<<"Derived2 destroyed\n";
 }
 };

 void main()
 {
 Base * pBase = new Derv1;
 delete pBase;
 }
 The output for it is :
 Base destroyed.

• pBase stores address of object of Derv1 class.
• Delete pBase destroy the Base object i.e. calls the destructor of base class.
• If the destructor is made virtual by the line virtual ~Base () ;
 then,
 delete pBase ;
Simply calls the destructor of Derv class first and the output is now
 Derv destroyed.
 Base destroyed.

}

Virtual Base class:
 In multiple inheritance, if a base class parent derives its two child class then
another class is derived from two child, as
 When member function of class D want to access A

D

CB

 data member of parent class A, then problem arises due to ambiguity.
 To resolve such ambiguity we use virtual base class.
A virtual base class is one from which classes are derived virtually. as
 class A.
 { // body of class A
 };
 class B: virtual public A
 {
 // Body of B
 };

By- Prem Raj Bhatta

7

Downloaded from: http://www.bsccsit.com/

 Function

 class C:virtual public A
 { // Body of class C
 };

class D: public B; public C.
{
};

Example:
class parent class child1: public parent
{ protected: { };
int basedata; class child2: public parent
}; { };
class grandchild: public child1, child2
{ public:
 int getdata()
 { return basedata; } // Error: ambiguous
};
 When the member function of grandchild attempts to access base data in parent,
each child1 and child2 inherits the copy of basedata. Since grandchild class is derived
from both child1 and child2, so attempting to access base data becomes ambiguous in
grandchild.
 This ambiguity is overcomed by making virtual base class as
 class child1: virtual public parent
 { };
 class child2: virtual public parent
 { };
 The use of virtual in these two class causes them to share a single common copy
of base data. So attempt to access base data in grandchild is not ambiguous.
#include <iostream.h>
#include <conio.h>
class student
{
 protected:
 int roll;
 public:
 void getno(int a)
 {
 roll=a;
 }
 void putno()
 {
 cout<<"\nRollNumber is:"<<roll;
 }
};
class test:virtual public student
{
 protected:
 float part1,part2;
 public:
 void getmark(float a, float b)

By- Prem Raj Bhatta

8

Downloaded from: http://www.bsccsit.com/

 Function

 {
 part1=a;
 part2=b;
 }
 void putmark()
 {
 cout<<"\nPart1="<<part1;
 cout<<"\nPart2="<<part2;
 }
};
class sport:virtual public student
{
 protected:
 int score;
 public:
 void getscore(int a)
 {
 score=a;
 }
 void putscore()
 {
 cout<<"\nScore:"<<score;
 }
};
class result:public test, public sport
{
 float total;
 public:
 void display()
 {
 total=part1+part2+score;
 putno();
 putmark();
 putscore();
 cout<<"\nTotal Score:"<<total;
 }
};
void main()
{
 clrscr();
 result student1;
 student1.getno(999);
 student1.getmark(25,54);
 student1.getscore(7);
 student1.display();
 getch();
}

By- Prem Raj Bhatta

9

Downloaded from: http://www.bsccsit.com/

 Function

//Write a program to that uses a new and delete for dynamic
//Memory allocation to calculate the product of two matrices.
#include <iostream.h>
#include <conio.h>
class matrix
{
 int mrow,mcol;
 int *ptr;
 public:
 matrix(int r, int c)
 {
 mrow=r;mcol=c;
 ptr=new int [r*c];
 }
 void getdata()
 {
 int i,j,mat_off,temp;
 cout<<"\nEnter elements matrix:\n";
 for(i=0;i<mrow;i++)
 {
 for(j=0;j<mcol;j++)
 {
 mat_off=i*mcol+j;
 cin>>ptr[mat_off];
 }
 }
 }
 void print()
 {
 int i,j,mat_off;
 for(i=0;i<mrow;i++)
 {
 cout<<"\n";
 for(j=0;j<mcol;j++)
 {
 mat_off=i*mrow+j;
 cout<<"\t";
 cout<<ptr[mat_off];
 }
 }
 }
 matrix operator *(matrix b)
 {
 matrix c(b.mcol,mrow);
 int i,j,k,mat_off1,mat_off2,mat_off3;
 for(i=0;i<c.mrow;i++)
 {
 for(j=0;j<c.mcol;j++)
 {
 mat_off3=i*c.mcol+j;
 c.ptr[mat_off3]=0;
 for(k=0;k<b.mrow;k++)
 {
 mat_off2=k*b.mcol+j;

By- Prem Raj Bhatta

10

Downloaded from: http://www.bsccsit.com/

 Function

 mat_off1=i*mcol+k;
 c.ptr[mat_off3]+=ptr[mat_off1]+b.ptr[mat_off2];
 }
 }
 }
 return c;
 }
};
void main()
{
 clrscr();
 int rowa,cola,rowb,colb;
 cout<<"Enter the dimensional of matrix A";
 cin>>rowa;
 cin>>cola;
 matrix a(rowa,cola);
 a.getdata();

 cout<<"Enter the dimensional of matrix B";
 cin>>rowb;
 cin>>colb;
 matrix b(rowb,colb);
 b.getdata();

 matrix c(cola,rowb);
 c=a*b;
 cout<<"\nThe product of two matrix=";
 c.print();
 getch();
}

By- Prem Raj Bhatta

11

Downloaded from: http://www.bsccsit.com/

 Namespace

10. Namespace
A program includes many identifiers defined in different scopes. Sometimes an
identifier of one scope will overlap (i.e. collide) with an identifier of the same name in
a different scope, potentially creating a problem. Identifier overlapping also occurs
frequently in third-party libraries that happen to use the same names for global
identifiers (such as functions).

To solve this problem, we use the concept of namespace. Each namespace defines
a scope where identifiers are placed. The general form namespace is:

namespace namespace_name {
 Namespace body (variables, functions, classes, etc.)
}

To use a namespace member, either the member’s name must be qualified with the
namespace name and a binary scope resolution operator (::), as in

namespace_name :: member

or a using statement must occur before the name is used. The general form in this
case is

using namespace namespace_name;

In this case, all the members of the namespace namespace-name can be used directly
by their names. We can also use only the specified members by using “using
statement” as follows

using namespace_name :: member;

One example of the namespace is the C++ standard library (std). All classes,
functions, and templates are declared within the namespace name std.

Example:
#include<iostream>
#include<conio>

namespace TestSpace {
 int m;
 void display(int n) {
 std :: cout<<n;
 }
}

void main() {
 clrscr();
 TestSpace :: m = 8;
 TestSpace :: display(TestSpace :: m);
 getch();
}

The same program can be written as follows:
#include<iostream>
#include<conio>

using namespace std;

namespace TestSpace {

By: Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com/

 Namespace

 int m;
 void display(int n) {
 cout<<n;
 }
}
using namespace TestSpace;

void main() {
 clrscr();
 m = 8;
 display(m);
 getch();
}

We can again write the same program as follows:
#include<iostream>
#include<conio>

using std :: cout;

namespace TestSpace {
 int m;
 void display(int n) {
 cout<<n;
 }
}

using TestSpace :: m;

using TestSpace :: display;
void main() {
 clrscr();
 m = 8;
 display(m);
 getch();
}

Note: Like in class, we can also declare a function inside the namespace and define it
outside. For example,

namespace TestSpace {
 int m;
 void display(int);
}

void TestSpace :: display(int n) {
 cout<<"You entered "<<n;
}
Nesting Namespaces
A namespace can be nested within another namespace as follows:
namespace Outer {
 ……
 ……
 namespace Inner {

By: Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

 Namespace

 ……
 ……
 }
 ……
 ……
}

Example:
#include<iostream>
#include<conio>

using namespace std;
namespace TestSpace {
 int m = 100;
 void display() {
 cout<<m;
 }

 namespace InnerSpace {
 int m = 200;
 void display() {
 cout<<m;
 }
 }
}

void main() {
 clrscr();
 TestSpace :: InnerSpace :: display();
 getch();
}

Output:
200

Alternatively, we can write
using namespace TestSpace :: InnerSpace;
display();

Or,
using TestSpace :: InnerSpace :: display;
display();
Unnamed Namespace
An unnamed namespace is one that does not have a name. Unnamed namespace
members occupy global scope and are accessible in all scopes following the
declaration in the file. The members in this case can be accessed without using any
qualification. A common use of unnamed namespace is to protect global data between
files.

Example:
#include<iostream>
#include<conio>

using namespace std;

By: Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

 Namespace

namespace {
 int m;
 void display(int n) {
 cout<<"You entered "<<n;
 }
}

void main() {
 clrscr();
 cout<<"m = ";
 cin>>m;
 display(m);
 getch();
}
Using Classes in the Namespace
We can also define classes inside the namespace. For example,

#include<iostream>
#include<conio>

namespace NS {
class rectangle {

 private:
 int length, breadth;
 public:
 rectangle(int l, int b) {
 length = l;
 breadth = b;
 }

 int findarea() {
 return 2 * length * breadth;
 }

};
}

void main() {
 clrscr();
 using namespace std;
 NS :: rectangle r1(5, 3);
 cout<<"Area = "<<r1.findarea();
 getche();
}

Output:
Area = 30

Alternatively, we can write
using namespace NS;
rectangle r1(5, 3);
Or
using NS :: rectangle;
rectangle r1(5, 3);

By: Prem Raj Bhatta 4

Downloaded from: http://www.bsccsit.com/

 Inheritance

11. Templates

Templates are a mechanism that makes it possible to use one function or class to handle
many different data types. By using templates, we can design a single class or function
that operates on data of many types, instead of having to create a separate class or
function for each type. When used with function they are called function templates and
when used with class they are called class templates.

Function Templates
The limitation of function is they can operate only on a particular data type. It can be
overcome by defining that function as a function template or generic function. A function
template specifies how an individual function can be constructed. Consider the following
program:
//function overloading
//multiple function with same name
//showing need for template

#include<iostream.h>
#include<conio.h>
int max(int ,int);
long max(long, long);
float max(float,float);
char max(char,char);
void main()
{
 int i1=15,i2=20;
 cout<<"Greater is "<<max(i1,i2)<<endl;
 long l1=40000, l2=38000;
 cout<<"Greater is "<<max(l1,l2)<<endl;
 float f1=55.05, f2=67.777;
 cout<<"Greater is "<<max(f1,f2)<<endl;
 char c1='a',c2='A';
 cout<<"Greater is "<<max(c1,c2)<<endl;
 getch();
}

int max(int i1, int i2)
{
 return(i1>i2?i1:i2);
}

long max(long l1, long l2)
{
 return(l1>l2?l1:l2);
}

float max(float f1, float f2)
{
 return(f1>f2?f1:f2);
}

char max(char c1, char c2)
{

By- Prem Raj Bhatta

1

Downloaded from: http://www.bsccsit.com/

 Inheritance

 return(c1>c2?c1:c2);
}
Above program of multiple max functions are used to find greater value among two, for
different data types. This illustrates the need for function templates. The program consists
of 4 max functions.

int max(int ,int);
long max(long, long);
float max(float,float);
char max(char,char);

Whose logic of finding greater value is same and differs only in terms of data types. The
C++ template features enables substitution of a single piece of code for all these
overloaded function as follows.

template <class T>
T max(T a, T b)
{
 return(a>b?a:b);
}

Such functions are known as function templates. When max operation is requested on
operands of any data types, the compiler creates a function internally without the user
intervention and invokes the same.
A function template is prefixed with the keyword template and a list if template type
arguments. The template-type arguments are called generic data types, since their
memory requirement and data representation is not known in the declaration of the
function template. It is known only at the point of a call to a function template.
 Template <class T, …..>
 Return_type function_name(arguments)
 {
 …………..//body of template
 …………..
 }

//find greater using template
#include<iostream.h>
#include<conio.h>

template <class T>
T max(T a, T b)
{
 return(a>b?a:b);
}
void main()
{
 int i1=15,i2=20;
 cout<<"Greater is "<<max(i1,i2)<<endl;
 long l1=40000, l2=38000;
 cout<<"Greater is "<<max(l1,l2)<<endl;
 float f1=55.05, f2=67.777;
 cout<<"Greater is "<<max(f1,f2)<<endl;

By- Prem Raj Bhatta

2

Downloaded from: http://www.bsccsit.com/

 Inheritance

 char c1='a',c2='A';
 cout<<"Greater is "<<max(c1,c2)<<endl;
 getch();
}

Function and Function Template
Function templates are not suitable for handling all data types, so it is necessary to
override function templates by using normal function for specific data types. If a program
has both the function and function template with the same name, first compiler selects the
normal function, if it matches with the requested data type, otherwise it creates a function
using a function template.

//function with function template
#include<iostream.h>
#include<string.h>
#include<conio.h>

template <class T>
T max(T a, T b)
{
 return(a>b?a:b);
}

//for string data types
char *max(char *a, char *b)
{
 if(strcmp(a,b)>0)
 return a;
 else
 return b;
}

void main()
{
 int i1=15,i2=20;
 cout<<"Greater is "<<max(i1,i2)<<endl;
 long l1=40000, l2=38000;
 cout<<"Greater is "<<max(l1,l2)<<endl;
 float f1=55.05, f2=67.777;
 cout<<"Greater is "<<max(f1,f2)<<endl;
 char c1='a',c2='A';
 cout<<"Greater is "<<max(c1,c2)<<endl;
 char str1[]="apple", str2[]="zebra";
 cout<<"greater is "<<max(str1,str2);
 getch();
}

Overloaded Function Templates
The function templates can also be overloaded with multiple declarations. Similar to
overloading of normal functions, overloaded function templates must differ either in
terms of number of parameters or their type.

//overloading function template

By- Prem Raj Bhatta

3

Downloaded from: http://www.bsccsit.com/

 Inheritance

//overloaded function templates
#include<iostream.h>
#include<conio.h>

template <class T>
void print(T data)
{
 cout<<data<<endl;
}
template <class T>
void print(T data, int n)
{
 for(int i=0;i<n;i++)
 cout<<data<<endl;
}

void main()
{
 print(1); // 1
 print(1.5); //1.5
 print(420,2); //420 two times
 print("my Nepal my pride",3); //3 times
 getch();
}

Class Templates
Similar to functions, classes can also be declared to operate on different data types. Such
classes are called class templates. A class template specifies how individual classes can
be constructed similar to normal class specification. These classes model a generic class
which supports similar operations for different data types. A generic stack like generic
function can be created which can be used for storing data of type integer, floating
number, character etc.

//implementation of stack class as template
#include<iostream.h>
#include<stdlib.h>
#include<conio.h>
#define max 20

template <class T>
class stack
{
 private:
 T s[max];
 int top;
 public:
 stack() //constructor
 { top=-1;}

 void push(T x)//put number on stack
 {

 s[++top]=x;
 }
 T pop()//take number from stack

By- Prem Raj Bhatta

4

Downloaded from: http://www.bsccsit.com/

 Inheritance

 {

 return s[top--];
 }
};

void main()
{
 //for integer data type
 stack <int> s1;

 s1.push(11);
 s1.push(22);
 s1.push(33);
 cout<<"\nNumber Popped:"<<s1.pop(); //33
 cout<<"\nNumber Popped:"<<s1.pop(); //22
 s1.push(44);
 cout<<"\nNumber Popped:"<<s1.pop(); //44
 //for floating point data type
 stack <float> s2;
 s2.push(11.11);
 s2.push(22.22);
 s2.push(33.33);
 cout<<"\nNumber Popped:"<<s2.pop(); //33.33
 cout<<"\nNumber Popped:"<<s2.pop(); //22.22
 s2.push(44.44);
 cout<<"\nNumber Popped:"<<s2.pop(); //44.44

//for character data type
 stack <char> s3;
 s3.push('A');
 s3.push('B');
 s3.push('C');
 cout<<"\nNumber Popped:"<<s3.pop(); //C
 cout<<"\nCharcter Popped:"<<s3.pop(); //B
 s3.push('D');
 cout<<"\nCharcter Popped:"<<s3.pop(); //D
 getch();
}

Write a program in C++ using function template to sort different
types of data using any algorithms.

#include <iostream.h>
#include <conio.h>

template <class t>
void bubble(t sort[], int n)
{ t temp;
 int i,j;
 for(i=0;i<n;i++)
 {
 for(j=0;j<n-i-1;j++)
 {

By- Prem Raj Bhatta

5

Downloaded from: http://www.bsccsit.com/

 Inheritance

 if(sort[j]>sort[j+1])
 {
 temp=sort[j];
 sort[j]=sort[j+1];
 sort[j+1]=temp;
 }
 }
 }
}
void main()
{
 clrscr();
 int arr[]={1,8,5,9,10};
 float num[]={1.5,12.5,3.5,5.5,1.5};
 int i;
 cout<<"Number integer:\n";
 bubble(arr,5);
 for(i=0;i<5;i++)
 cout<<arr[i]<<endl;
 cout<<"Number floating\n";
 bubble(arr,5);
 for(i=0;i<5;i++)
 cout<<num[i]<<endl;
 getch();
}

By- Prem Raj Bhatta

6

Downloaded from: http://www.bsccsit.com/

 Exceptions

12. Exceptions
Introduction
Exceptions are runtime anomalies or unusual conditions that a program may
encounter while executing. Exceptions might include conditions such as division by
zero, access to an array outside of its bounds, running out of memory or disk space,
not being able to open a file, trying to initialize an object to an impossible value etc.

When a program encounters an exceptional condition, it is important that it is
identified and dealt with effectively. C++ provides built-in language features to detect
and handle exceptions, which are basically runtime errors.

The purpose of the exception handling mechanism is to provide means to detect
and report an “exceptional circumstance” so that appropriate action can be taken. The
mechanism suggests a separate error handling code that performs the following tasks:

• Find the problem (Hit the exception).
• Inform that an error has occurred (Throw the exception).
• Receive the error information (Catch the exception).
• Take corrective action (Handle the exception).

The error handling code basically consists to two segments, one to detect errors
and to throw exceptions, and the other to catch the exceptions and to take appropriate
actions.

Exception Handling Mechanism
Exception handling mechanism in C++ is basically built upon three keywords: try,
throw, and catch. The keyword try is used to surround a block of statements, which
may generate exceptions. This block of statements is known as try block.

When an exception is detected, it is thrown using the throw statement situated either
in the try block or in functions that are invoked from within the try block. This is
called throwing an exception and the point at which the throw is executed is called
the throw point.

A catch block defined by the keyword catch catches the exception thrown by the
throw statement and handles it appropriately. This block is also called exception
handler. The catch block that catches an exception must immediately follow the try
block that throws an exception.

Throw
exception

The figure below shows the exception handling mechanism if try block throws an
exception. The general form in this case is:
……… try block

Detects and throws
an exception

………
try {

catch block

Catches and handles
the exception

 ………
 throw exception;
 ………
 ………
} catch(type arg) {
 ………

By- Prem Raj Bhatta 1

Downloaded from: http://www.bsccsit.com/

 Exceptions

 ………
}
………
………

The figure below shows the exception handling mechanism if function invoked by try
block throws an exception.

Throw point

Function that causes
an exception

type function(arg list) {
 ………
 ………

Invoke
function

Throw
exception

try block

Invokes a function that
contains an exception

catch block

Catches and handles
the exception

 throw exception
 ………
 ………
}
………
………
try {
 ………
 invoke function here
 ………
} catch(type arg) {
 ………
 ………
}
………
………
Examples
Example1: Try block throwing exception

#include<iostream.h>
#include<conio.h>

void main() {
clrscr();
int a, b;
cout<<"Enter values of a & b:\n";
cin>>a>>b;
try {

if(b == 0)
throw b;

else
cout<<"Result = "<<(float)a/b;

} catch(int i) {
cout<<"Divide by zero exception: b = "<<i;

}
cout<<"\nEND”;
getche();

}

By- Prem Raj Bhatta 2

Downloaded from: http://www.bsccsit.com/

 Exceptions

Example2: Function invoked by try block throwing exception

#include<iostream.h>
#include<conio.h>

void divide(int a, int b) {
if(b == 0)

 throw b;
 else
 cout<<"Result = "<<(float)a/b;
}

void main() {
clrscr();
int a, b;
cout<<"Enter values of a & b:\n";
cin>>a>>b;
 try {

divide(a, b);
} catch(int i) {

cout<<"Divide by zero exception: b = "<<i;
}
cout<<"\nEND”;
getche();

}

Output:(In both examples)
First Run

Enter the values of a & b:
5
2
Result = 2.5
END

Second Run
Enter the values of a & b:
9
0
Divide by zero exception: b = 0
END

In the first example, if exception occurs in the try block, it is thrown and the program
control leaves in the try block and enters the catch block. In the second example, try
block invokes the function divide. If exception occurs in this function, it is thrown and
control leaves this function and enters the catch block.

Note that, exceptions are used to transmit information about the problem. If the
type of exception thrown matches the argument type in the catch statement, then only
catch block is executed for handling the exception. After that, control goes to the
statement immediately after the catch block.

If they do not match, the program is aborted with the help of abort() function,
which is invoked by default. In this case, statements following the catch block are not
executed.

When no exception is detected and thrown, the control goes to the statement
immediately after the catch block skipping the catch block.

By- Prem Raj Bhatta 3

Downloaded from: http://www.bsccsit.com/

 Exceptions

Throwing Mechanism
When an exception is detected, it is thrown using the throw statement in one of the
following forms:

throw(exception);
throw exception;
throw; //used for rethrowing an exception (discussed later)

The operand exception may be of any type (built-in and user-defined), including
constants. When an exception is thrown, the catch statement associated with the try
block will catch it. That is, the control exits the current try block, and is transferred to
the catch block after the try block.

Throw point can be in a deeply nested scope within a try block or in a deeply
nested function call. In any case, control is transferred to the catch statement.

Catching Mechanism
Code for handling exceptions is included in catch blocks. The general form of catch
block is:

catch(type arg) {
Body of catch block

}

The type indicates the type of exception that catch block handles. The parameter arg
is optional. If it is named, it can be used in the exception handling code. The catch
statement catches an exception whose type matches with the type of catch argument.
When it is caught, the code in the catch block is executed. After its execution, the
control goes to the statement immediately following the catch block.

If an exception is not caught, abnormal program termination will occur. The catch
block is simply skipped if the catch statement does not catch an exception.
⇒ Multiple Catch Statements: It is possible that a program segment has more than

one condition to throw an exception. In such cases, we can associate more than
one catch statement with a try as shown below:

try {
Try block

} catch(type1 arg) {
 Catch block1
} catch(type2 arg) {
 Catch block 2
}
………
………
} catch(typeN arg) {
 Catch block N
}

When an exception is thrown, the exception handlers are searched in order for an
appropriate match. The first handler that yields a match is executed. After that, the
control goes to the first statement after the last catch block for that try skipping
other exception handlers. When no match is found, the program is terminated.

By- Prem Raj Bhatta 4

Downloaded from: http://www.bsccsit.com/

 Exceptions

Note: It is possible that arguments of several catch statements match the type of
an exception. In such cases, the first handler that matches the exception type is
executed.

Example:
#include<iostream.h>
#include<conio.h>

void test(int x) {
 try {
 if(x == 0) throw x;
 if(x == 1) throw 1.0;
 } catch(int m) {
 cout<<"Caught an integer\n";
 } catch(double d) {
 cout<<"Caught a double";
 }
}

void main() {
 clrscr();
 test(0);
 test(1);
 test(2);
 getche();
}

Output:
Caught an integer
Caught a double

⇒ Catch All Exceptions: If we want to catch all possible types of exceptions in a
single catch block, we use catch in the following way:

catch(…) {
 Statements for processing all exceptions
}

Example:
#include<iostream.h>
#include<conio.h>

void test(int x) {
 try {
 if(x == 0) throw x;
 if(x == 1) throw 1.0;

 } catch(…) {
 cout<<"Caught an exception\n";
 }
}

void main() {
 clrscr();
 test(0);

By- Prem Raj Bhatta 5

Downloaded from: http://www.bsccsit.com/

 Exceptions

 test(1);
 test(2);
 getche();
}

Output:
Caught an exception
Caught an exception

Rethrowing an Exception
A handler may decide to rethrow the exception caught without processing it. In such
situations, we may simply invoke throw without any arguments as shown below:

throw;

This causes the current exception to be thrown to the next enclosing try/catch
sequence and is caught by a catch statement listed after that enclosing try block. For
example,

#include<iostream.h>
#include<conio.h>

void divide(int a, int b) {
try {

 if(b == 0)
 throw b;
 else
 cout<<"Result = "<<(float)a/b;
 }
 catch(int) {
 throw;
 }
}

void main() {
 clrscr();
 int a, b;
 cout<<"Enter values of a & b:\n";
 cin>>a>>b;
 try {
 divide(a, b);
 } catch(int i) {
 cout<<"Divide by zero exception: b = "<<i;
 }
 cout<<”\nEND”;
 getche();
}

Output:
Similar to first two examples (Try Yourself)

By- Prem Raj Bhatta 6

Downloaded from: http://www.bsccsit.com/

 Exceptions

Specifying Exceptions
It is also possible to restrict a function to throw only certain specified exceptions. This
is achieved by adding a throw list clause to the function definition. The general form
is as follows:

type function(arg-list) throw (type-list) {
 Function body
}

The type-list specifies the type of exceptions that may be thrown. Throwing any other
type of exception will cause abnormal program termination. If we wish to prevent a
function from throwing any exception, we may do so by making the type-list empty.
Hence the specification in this case will be

type function(arg-list) throw () {
 Function body
}

Note: A function can only be restricted in what types of exception it throws back to
the try block that called it. The restriction applies only when throwing an exception
out of the function (and not within the function).

Example:
#include<iostream.h>
#include<conio.h>

void test(int x) throw (int, double) {
if(x == 0) throw x;

 if(x == 1) throw 1.0;
}

void main() {
 clrscr();
 try {
 test(1);
 } catch(int m) {
 cout<<"Caught an integer\n";
 } catch (double d) {
 cout<<"Caught a double";
 }
 getche();
}

Output:
Caught a double

By- Prem Raj Bhatta 7

Downloaded from: http://www.bsccsit.com/

 File Handling

12. Stream Classes (Class hierarchy)

 A stream is a name given to flow of data. In C++ stream is represented by an object of a particular
class e.g. cin and cout are input and output stream objects.

There are no any formatting characters in stream like %d, %c etc in C which removes major source of
errors.Due to overloading operators and functions, we can make them work with our own classes.

The Stream class hierarchy:

ios

istream

streambuf

filebuf

ostream

 iostream Iostream_
withassign

ostream_withaassign

istream_withassign

ofstreamfstream ifstream

fstreambase

<iostream.h>

<fstream.h>

filebuf: The class filebuf sets the file buffer to read and write.

C++ Class Hierarchy

ios: ios class is parent of all stream classes and contains the majority of C++ stream features.

istream class: Derived from ios and perform input specific activities.

ostream class: derived from ios class and perform output specific activities.

Input stream

output stream

program
Disk File

File I/O
write

rearea

Data

Data

istreamistream

ostream

 1By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

iostream class: Derived from both istream and ostream classes, it can perform both input and output
activities and used to derive iostream_withassign class.

_withassign classes: There are three _withassign classes.

- istream_withassign
- ostream_withassign
- iostream_withasssign

These classes are much like those of their parent but include the overloaded assignment operators.

streambuf: sets stream buffer i.e. an area in memory to hold the objects actual data. Each object of a
class associated with the streambuf object so if we copy the stream object it cause the confusion that
we are also copying streambuf object. So _withassign classes can be used if we have to copy otherwise
not.

fstreambase: Provides operations common to file streams. Serves as a base for fstream, ifstream and
ofstream and contains open() and close() functions.

ifstream: Contains input operations in file. Contains open() with default input mode, inherits get(),
getline() read(), seekg(), tellg() from istream.

ofstream: Provides output operation in file. Contains open() with default output mode, inherits put().
Seekp(), tellp() and write() from ostream.

fstream: Provides support for simultaneous input and output operations. Contains open() with default
input mode: Inherits all the functions of istream and ostream through iostream.

File I/O with stream classes:

In C++,file handling is done by using C++ streams. The classes in c++ for file I/O are ifstream for
input files,ofstream for output files, and fstream for file used for both input and output operation.
These classes are derived classes from istream,ostream,and iostream respectively and also from
fstreambase.

 -The header file for ifstream,ofstream and fstream classes is <fstream.h>
-To create and write disk file we use ofstream class and create object of it.
 e.g. ofstream outf;

The creation and opening file for write operation is done either using its constructor or using open()
member function which had already been defined in ofstream class.

Creating and opening file for write operation is as:
ofstream outf(“myfile.txt”); //using constructor of ofstream class.
 Or
ofstream outf;

 2By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

outf.open(“myfile.txt”); // using open() member function.

Writing text into file:
 We use the object of ofstream to write text to file created as:
outf<<”This is the demonstration of file operation\n”;
outf<<”You can write your text\n”;
outf<<”The text are written to the disk files\n”;

An example for writing to disk file.
#include<fstream.h>
void main()

{ //constructor creates file and ready to write
ofstream outf(“myfile.txt”);

 /* Alternate for above line is
 ofstream outf; //using open() member function
 outf.open(“myfile.txt”);
 */

 outf<<”File demonstration program\n”;

//writes strings to file myfile.txt
 outf<<”These strings are written to disk\n”;
 }

Writing data to file:
int x = 20; float f = 2.5;
char ch = 'c'; char* str = " string";
Writing to file is done as
Outf<<x<<" " <<f<<' '<<ch<<' '<<str;

Example
#include<iostream.h>
#include<fstream.h>

void main()
{
 char ch='c';
 int i= 70;
 float f = 6.5;
 char *str= "Patan";
 ofstream fout("Test.data");
 fout<<ch<<' '<<' '<<f<<' '<<str;
 cout<<"Data written to file\n";
}

 3By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

Reading data from file:
-To read data from file , we use an object of ifstream class File is opened for reading using constructor
of ifstream class or open() member function as;
ifstream fin("test.txt"); //constructor
or
ifstream fin;
fin.open("test.txt"); // member function open();
Reading data is done as:
Fin>>ch>>i>>f>>str; which is similar as reading data from keyboard
by cin object.

String with embedded blanks:
-Require delemeter line \n for each string with embedded blank and read/write operation is easy.

Reading text from file:

To read text from file we use ifstream class and file is opened for read operation using constructor or
open() member function.

e.g. : ifstream infile(“myfile.txt”); //using constructor

or
ifstream infile;
infile.open(“myfile.txt”);

 // Reading from file myfile.txt:
 While(infile) // or while(!infile.eof()) until end of file
 {
 infile.getline(buffer,maxlength); //buffer to be defined as char
 //string of length maxlength
 cout<<buffer; // for display to screen
 }

 A sample program to read from myfile.txt

#include<fstream.h>
#include<iostream.h>

void main()
{
 const int LEN = 100;
 char text[LEN]; //for buffer
 ifstream infile(“myfile.txt”);

while(infile) //until end of file Alternate is
//while(!infile.eof())

 {

 4By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

 infile.getline(text,LEN); // read a line of text
 cout<<endl<<text; //display line of text
 }
}

Character I/O in file[get() and put() function]

put() and get() functions are members of ostream and istream classes so they are inherited to ofstream
and ifstream objects. put() is used to write a single character in file and get is used for reading a
character from file.
Example:
#include<iostream.h>
#include<fstream.h>
#include<string.h>

void main()
{
 char*str="This is a string written to file one char at a time";
 ofstream fout;
 fout.open("myfile.txt");
 for(int i=0;i<strlen(str);i++)]
 {
 fout.put(str[i]);
 }
 cout<<"File write completed";
}

// Reading character wise from above file
char ch;
ifstream infile;
infile.open("myfile.txt");
while(infile)
{
 infile.get(ch);
 cout<<ch;
}

Working with multiple file:
When more than one file is used in a single program for read write operation one file is closed or
disconnected from program using close() member function and other file is opened using open().

A sample program:

#include<iostream.h>
#include<fstream.h>

 5By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

void main()
{

ofstream outfile;
//create file district and open for write
outfile.open(“district”);
outfile<<”Kathmandu\n”;
outfile<<”Lalitpur\n”;
outfile<<”Kavreplanchowk\n”;
outfile<<”Dhading\n”;

outfile.close(); // close the file district after writing

outfile.open(“headqtr”);
outfile<<”Kathmandu\n”;
outfile<<”Patan\n”;
outfile<<”Dhulikhel\n”;
outfile<<”Trisuli\n”;
outfile.close(); //closes the file headqtr

//Reading the above files
const int LEN = 80;
char text[LEN];
ifstream infile(“district”); //opens file district for read
while(infile)
{
 infile.getline(text,LEN);
 cout<<endl<<text;
}
inflie.close(); //closes file district after display

infile.open(“headqtr”);
while(infile)
{
 infile.getline(text,LEN);
 cout<<text;
}
infile.close(); //closes file headqtr
}

Writing and reading of user input to the file:

 We can also write user-input (values of variables in a program input from keyboard) and read those
values by using objects of ofstream and ifstream respectively same as done above . Look at these
simple program example.

#include<fstream.h>

 6By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

void main()
{
 ofstream fout(“test”); //creates and open for writing
 cout<<”Enter the Name:”;
 char name[20];
 cin>>name; //reading from keyboard
 fout<<name<<endl; //writing to the file “test”
 cout<<”Enter telephohe:”;
 int tel;
 cin>>tel; //reading from keyboard
 fout<<tel; //writing to file “test”

 fout.close(); //Closes the file “test”
 ifstream fin(“test”); //opens the file test for read
 fin>>name; //reading from file
 fin>>tel; //reading from file
 cout<<endl<<”The name is: “<<name;
 cout<<endl<<”Telephone no: “ <<tel;
 fin.close();
 }

Opening file in different mode:
 In above example we have used the ofstream and ifstream constructors or open() member function
using only one argument i.e. filename e.g. “test” etc. However this can be done by using two argument.
One is filename and other is filemode.
 Syntax:
 Stream-object.open(“filename”,filemode);

The second argument filemode is the parameter which is used for what purpose the file is opened. If
we haven’t used any filemode argument and only filename with open() function, the default mode is
as:

 ios::in for ifstream functions means open for reading only.
 i.e. fin.open(“test”); is equivalent to fin.open(“test”,ios::in); as default
 ios::out for ofstream functions means open for writing only.
 fout.open(“test”); is same as fout.open(“test”,ios::out); as default.

Class fstream inherits all features of ifstream and ofstream so we can use fstream object for both
input/output operation in file. When fstream class is used , we should mention the second parameter
<filemode> with open().
The file mode parameter can take one or more such predefined
constants in ios class. The following are such file mode parameters.

 Parameters Meanings
ios::app Append to end of file
ios::ate Go to end-of-file on opening

 7By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

ios::binary Binary file
ios::in open file for reading only
ios::nocreate Opens fails if the file does not exists
ios::noreplace Open files if the file already exists
ios::out Open file for writing only
ios::trunc Delete the contents of files if it exits

- Opening file in ios::out mode also opens in the ios::trunc mode default
- ios::app and ios::ate takes to the end-of-file when opening but only difference is that ios::app

allows to add data only end-of-file but ios::ate allows us to add or modify data at anywhere in
the file. In both case file is created if it does not exists.

- Creating a stream ofstream default implies output(write) mode and ifstream implies
input(read), but fstream stream does not provide default parameter so we must provide the
mode parameter with fstream.

- The mode can combine two or more parameters using bitwise OR operator (|)
e.g. fout.open(“test”,ios::app|ios::out);

File Pointers:

The file management system associates two types of pointers with each file.

1. get pointer (input pointer)
2. put pointer (output pointer)

These pointers facilitate the movement across the file while reading and writing.
 • The get pointer specifies a location from where current read operation initiated.
 • The put pointer specifies a location from where current write operation initiated.

The file pointer is set to a suitable location initially depending upon the mode which it is opened.
• Read-only Mode: When a file is opened in read-only mode, the input (get) pointer is initialized to
the beginning of the file.
• Write-only: mode: In this mode, existing contents are deleted if file exists and put pointer is set to
beginning of the file.
• Append mode: In this mode, existing contents are unchanged and put pointer is set to the end of file
so writing can be done from end of file.

Read

t e s t f i l e
 Input pointer
write

 output pointer

Append

t e s t f i l e
 output pointer

 8By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

Functions manipulating file pointers:
C++ I/O system supports 4 functions for setting a file to any desired position inside the file.
 The functions are
Function member of class Action
seekg() ifstream moves get file pointer to a specific location
seekp() ofstream moves put file pointer to a specific location
tellg() ifstream Return the current position of the get ptr
tellp() ofstream Return the current position of the put ptr

 These all four functions are available in fstream class by inheritance. The two seek() functions
have following prototypes.
 istream & seekg (long offset, seek_dir origin =ios::beg);
 ostream & seekp (long offset, seek_dir origin=ios::beg);

- Both functions set file ptr to a certain offset relative to specified origin. The origin is relative
point for offset measurement. The default value for origin is ios::beg.

- (seek_dir) an enumeration declaration given in ios class as

orgin value seek from
ios::beg seek from beginning of file
ios::cur seek from current location
ios::end seek from end of file

e.g. ifstream infile;
 infile.seekg(20,ios::beg); or infile.seekg(20); // default ios::beg move
file ptr to 20th byte in the file. The reading start from 21st item [byte start from 0] with file.

20 bytes get ptrios::beg

Then after, infile.seekg(10,ios::cur); moves get pointer 10 bytes further from current
position.

20 bytes get ptrios::cur
10 bytes

ios::beg

Similarly:
ofstream outfile;
outfile.seekp(20,ios::beg); // out file. seek p (20);
moves file put pointer to 20th byte and if write operation is initiated, start writing from 21st item.

 9By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

Consider following example
ofsteam outfile("student",ios::app);
int size=outfile.tellp();
Return the size of file in byte to variable size since ios::app takes file put ptr at end of file. The
function tellp() returns the takes file put ptr at end of file. The function tellp() returns the current
position of put ptr.

Equivalently:
ifstream infile("student");
infile.seekg(0,ios::end);
int size=infile.tellg() ;
 This returns the current file pointer position which is at end
of file so we gget he size of fife "student".

Some of pointer offset calls and their actions:
Assume: ofstream fout;
Seek Action
fout.seekg(0,ios::beg) Go to beginning of the file
fout.seekg(0,ios::cur) Stay at current location
fout.seekg(0,ios::end) Go to the end of file
fout.seekg(n,ios::beg) move to (n+1) byte from beginning of file.
fout.seekg (n,ios::cur) move forword by n bytes from currrent position
fout.seekg(-n,ios:: cur) move backward by n bytes from currnt position
fout.seekp(n,ios:: beg) move write pointer (n+1) byte location
fout.seekp(-n,ios:: cur) move write ptr n bytes backwards.

File I/O with fstrem class
Fstream class supports simultaneous input/output operations. It inherits function from istream and
ostream class through iostream.

Following program illustrates this
#include<iostream.h>
#include<fstream.h> //Assume file student.in
#include<conio.h> //is created with
#include<process.h> //1. no of student (count)
void main() //2. for n students
{
 fstream infile; // input file name
 fstream outfile; // output file percentage sane
 int i, count, percentage;
 char name[20];
 //open for read mode
 infile.open("student.in",ios::in);
 if(infile.fail()) // if operation failed.
 {
 cout<<"Error: student.in open fail";

 10By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

 exit(1);
 }
 //open next file for write
 outfile.open("student.out",ios::out);
 if(outfile.fail())
 { cout<<"Error:......"; exit(1);
 }
 infile>>count; // no of student
 outfile<<" student Information processing" <<endl;
 outfile<<" ------------------------------" <<endl;
 for(i=0; i<count; i++)
 { // Read data percentage from input file
 infile>>name;
 infile>>percentage;
 // write in output file.
 outfile<<"Name:"<<name<<endl;
 outfile<<"precentage:"plercentage<<endl;
 outfile<<"passed in:";
 if(percentage>=75)
 outfile<<"first Division/distinction";
 else if(percentage>=45)
 outfile<<" Second Div";
 else if(percentage>=35)
 outfile<<"Passed";
 else
 outfile<<"Failed";
 outfile<<endl;
 outfile<<"....................."<<endl;
 }
 // close files;
 infile.close();
 outfile.close();
}

The put () and get () function:

– The function get() is a member function of the file stream
class fstream, and used to read a single character from file.

– The function put() is member function of fstream class and used
to write a single character into file.

Example:
#include<fstream.h>
void main()
{

char c, string[100];
fstream file("student.txt",ios::in|ios::out);
cout<<"Enter string:";

 11By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

for (int i=0; string[i]!='\0'; i++)
file.put(string[i]);
file.seekg(0); // seek to the beging
cout<<"output string:";
while(file)
{

 file.get(c);
 cout<<c;

}
}

The write () and read () function:
• The write () function is a member of stream class fstream and used to write data in file
 as binary format.
• The read () function is used to read data (binary form) from a file.
• The data representation in binary format in file is same as in system. The no of byte
 required to store data in text form is proportional to its magnitude but in binary form,
 the size is fixed.

e.g.
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

3 2
 2 bytes

 2 byte

 5 bytes 2 bytes

3 2 6 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Text format Binary format

The prototype for read () & write () functions are as:.

infile.read((char*)&variable, sizeof(variable));
outfile.write((char*)&variable, sizeof(variable));

• The first parameter is a pointer to a memory location at which the data is to be retrieved [read()] or to
be written [write()] function.
• The second parameter indicates the number of bytes to be transferred.

Example :writing variable in to files
#include<fstream.h>
void main()
{

int number1=530;

 12By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

 float number2=100.50;
// open file in read binary mode, read integer and class
 ofstream ofile("number.bin",ios::binary);
 ofile.write((char*)&number1, sizeof(number1));
 ofile.write((char*)&number2, sizeof(float));
 ofile:close();
// open file in read binary mode, read integer & close
 ifstream ifile ("number.bin",ios::binary);
 ifile.read((char*)&number1,sizeof(number1));
 ifile.read((char*) &number2,sizeof(number2));
 cout<<number1<<" "<<number2<<endl;
 ifile.close();

}

Object I/O in file

C++ is Object-oriented language so we need objects to be written in file and read from file .
Following examples show the I/O operations .

Writing object to disk file:
Generally binary mode is used which writes object in disk in bit configurations.
//example
#include<fstream.h>
#include<iostream.h>
class emp
{
 char empname[20];
 int eno;
 float sal;
 public:
 void getdata()
 {
 cout<<"Enter Name:"; cin>>empname;
 cout<<"Enter Emp No:"; cin>>eno;
 cout<<"Enter salary:"; cin>>sal;
 }

};

void main()
{
emp em;
cout<<"Enter the detail of employee"<<endl;
em.getdata();
ofstream fout("emp.dat");

 13By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

fout.write((char*)&em,sizeof(em));
cout<<"Object written to file";
}

READING FROM FILE:

#include<fstream.h>
#include<iostream.h>
class emp
{
 char empname[20];
 int eno;
 float sal;
 public:

 void showdata()
 {
 cout<<"\nName:"<<empname<<endl;
 cout<<"Emp NO:"<<eno<<endl;
 cout<<"Salary:"<<sal<<endl;
 }
};

void main()
{
emp em;
ifstream fin("emp.dat");
fin.read((char*)&em,sizeof(em));
cout<<"Object detail from file";
em.showdata();
}

Writing and reading objects:
//student.cpp
#include<iostream.h>
#include<fstream.h>
#include<iomanip.h>
class student
{
 char name[20];
 int roll;
 char add[20];
 public:
 void readdata()
 {
 cout<<"Enter name:";cin>>name;

 14By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

 cout<<"Enter Roll. no.:";cin>>roll;
 cout<<"Enter address:";cin>>add;
 }
 void showdata()
 {
 cout<<setw(10)<<roll<<setiosflags(ios::left)<<setw(10)
 <<name<<setiosflags(ios::left)<<setw(10)<<add<<endl;
 }
};

void main()
{

 student s[5];
 fstream file;
 file.open("record.dat", ios::in|ios::out);
 cout<<"enter detail for 5 students:";
 for(int i=0;i<5;i++)
 {
 s[i].readdata();
 file.write((char*)&s[i],sizeof(s[i]));
 }
 file.seekg(0);//move pointer begining.
 cout<<"Output from file"<<endl;
 cout<<setiosflags(ios::left)<<setw(10)<<"RollNo"

<<setiosflags(ios::left)<<setw(10)<<"Name"
<<setiosflags(ios::left)<<setw(10)<<"Address"<<endl;

 for(i=0;i<5;i++)
 {
 file.read((char*)&s[i],sizeof(s[i]));
 s[i].showdata();
 }
 file.close();
}

Command Line Arguments

C++ supports the features that facilitates the supply of arguments to the main() function. The
arguments are supplied to the main at the time of program execution from command line. The main
function takes two arguments. First of which is argument count argc and second is an array of
arguments name argv[] as

main(int argc, char*argv[])

such program is invoked in command prompt as
C> programname arg1 arg2….

 15By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

Following example shows the use of command line arguments which reads two different files and

display the contents one containing even numbers and another containing odd numbers.

//Program commandline arguments

//evenodd.cpp
#include<iostream.h>
#include<fstream.h>
#include<stdlib.h>
#include<conio.h>
int main(int argc,char*argv[])
{
 int number[9]={11,22,33,44,55,66,77,88,99};
 if(argc!=3)
 {
 cout<<"argc="<<argc<<endl;
 cout<<"Error in arguments"<<endl;
 getch();
 exit(1);
 }
 ofstream fout1, fout2;
 fout1.open(argv[1]);
 if(fout1.fail())
 {
 cout<<"couldnot open the file"<<argv[1]<<endl;
 getch();
 exit(1);
 }
 fout2.open(argv[2]);
 if(fout1.fail())
 {
 cout<<"couldnot open the file"<<argv[2]<<endl;
 getch();
 exit(1);
 }

 for(int i=0;i<9;i++)
 {
 if(number[i]%2==0)
 fout2<<number[i]<<" ";
 else
 fout1<<number[i]<<" ";
 }
 fout1.close();
 fout2.close();
 ifstream fin;
 char ch;

 16By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

 for(i=1;i<argc;i++)
 {
 fin.open(argv[i]);
 cout<<"Contents of "<<argv[i]<<endl;
 while(fin)
 {
 fin.get(ch);
 cout<<ch;
 }
 cout<<endl<<endl;
 fin.close();
 }
 return 0;
}

This program can be invoked in command line as:

C:\evenodd EVEN ODD

The output of program will be;

Contents of EVEN
11 33 55 77 99

Contents of ODD
22 44 66 88

Example 2:

A program that copies contents of a text file to another file

#include<iostream.h>
#include<fstream.h>
#include<stdlib.h>
#include<conio.h>
int main(int arg,char*argv[])
{

char *str="This is a test file written and saved into disk for
copy";

 if(arg!=3)
 {
 cout<<"argc="<<arg<<endl;
 cout<<"Error in arguments"<<endl;
 getch();
 exit(1);
 }

 17By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

 File Handling

 ofstream fout;
 fout.open("test");
 fout<<str<<endl;
 fout<<"The contents of string is written into the file"<<endl;
 fout.close();
 fout.open(argv[2]);
 if(fout.fail())
 {
 cout<<"couldnot open the6 file"<<argv[2]<<endl;
 getch();
 exit(1);
 }
 ifstream fin;
 fin.open(argv[1]);
 if(fin.fail())
 {
 cout<<"couldnot open the file"<<argv[1]<<endl;
 getch();
 exit(1);
 }
 while(fin)
 { char ch;
 fin.get(ch);
 fout<<ch;
 }
 fin.close();
 fout.close();
 cout<<"File "<<argv[1]<<" is "<<"Copied to "<<argv[2]<<endl;
 return 0;
}

Execute it as:

C:\filecpy test TEST1

Output will be

File test is Copied to TEST1;

 18By- Prem Raj Bhatta

Downloaded from: http://www.bsccsit.com/

