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 Introduction and types  

 
The general idea behind implementation of sorting techniques is that, the resulting output would be useful 
for easier searching.  Searching in unsorted or unorganized items is quite inconvenient.  The number of 
items also plays important role in sorting and searching. 
 
Normally, a set of data that contains ‘n’ number of elements 
 e.g.  10, 8, 3, 32, 4, 5, 45, 645, 7,657, 567, 324, 433 
is known as a file of size ‘n’.  Every item in the file is known as a record. 
 
We know what a sorted data is.  But, a general representation of sorted file is that  
 
 If d[] is the file, then  
  d[i] < d[j] 
  where,  i = 0 àj-1 
   j = i + 1 
The explanation of ‘i' and ‘j’ depends on whether we are defining an ascending or a descending sort. 

 
Types 
 There are two types of sorts depending on the place where the file is kept.  If the file is kept in main 
 memory and sorted, then it is known as ‘internal’ sort and if the file also resides on auxiliary storage like 
 magnetic disks, then it is known as ‘external’ sort. 
 
 
 Stable sort 
 
 Let’s say, we have duplicate search keys as shown below; 
  

Name Address 
AAB BBC 
CDI LKK 
AAB BBA 
KKA KSO 
IEH IEU 

 Look at record number 0 and 2.  If we are sorting the records for name then if the sorting technique sorts the 
 data as; 

Name Address 
AAB BBC 
AAB BBA 
CDI LKK 
IEH IEU 

KKA KSO 
 The sort is known as stable sort.  In normal considerations, the data is sorted like; 
 

AAB BBA 
AAB BBC 

 
 But, the stable sort keeps track of original pattern unless specified. 
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 Efficiency  

 Whenever efficiency of a given algorithm is addressed, we point to two important complexities. 
 

1. Time complexity 
2. Space complexity 

 
 Time complexity defines how much time is taken by a given algorithm to compute the result and space 
 complexity defines how much memory space is needed by the algorithm.  They are inversely proportional 
 to each other. 
 
 Let’s have look at an example to swap values of two variables. 
 
 Algorithm – 1 

temp = b; 
b = a; 
a = temp; 

  
 Algorithm – 2  

a = a + b; 
b = a – b; 
a = a – b;  

 
 In algo-1, 3 variables are used and three assignment operations finish the swap.  In algo-2, there are only 
 two variables but 3 arithmetic operations and assignment operations.  If compared, algo-1 uses one more 
 variable and algo-2 uses 3 more arithmetic operations. 
 
 For time complexity, algo-1 runs fast as it does only three assignment operations where as algo-2 are 
 slower.   It uses 3 arithmetic operations plus three assignment operations.  You can see clearly that, for high 
 time complexity, there is low space complexity and for low time complexity there is high space complexity.  
 Generally, this property holds for all algorithms.  If both of the time and space complexities increase for 
 certain data set for an algorithm, then it is a bad algorithm. 
 

The exact amount of time required to execute an algorithm will depend on the implementation (language) of 
the algorithm and on the actual machine.  Hence, normally only the order of magnitude for the time 
required is expected from the analysis.  
 
The time requirements will normally depends on the amount of input.  Therefore, the time required is 
usually expressed as function of the size of the input (source) like, T(n) and the space as S(n). 

 
Complexity of algorithms  

The ‘complexity’ of an algorithm is the function f(n) which gives the running time and/or storage space 
requirement of the algorithm in terms of the size ‘n’ of the input data. 
 
Example: Linear search 
 
 - ITEM to be searched in the array DATA. 
 
 Worst case:  C(n) = n    (n – comparisons) 
 Average case:  It is equally likely to occur ITEM at any position in the array DATA.   
 Accordingly, the number of comparisons can be any of the nos. 1, 2, 3,  4, 5, .. . .. . . , n, and each 
 no. occurs with probability of    p = 1/n. 
 
 Then, 
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    i.e. 
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     C(n) = k. n 
 
      Where, K is a constant. 
 
Rate of growth: Big O notation 

From above, clearly the complexity of algorithm increases as ‘n’ increases.  It is usually the rate of growth 
of C(n) that we can examine.  To talk about growth rate of functions we use what is known as ‘big oh’ 
notation.  The searching time of linear search algorithm is said to be of order ‘n’ i.e. O(n), when it is 
proportion to n. 
 
The sorting time is O(n2) means that it is proportional to n2.  That is O(n2) = k.n2 where ‘k’ is a positive 
integer. 
 
è Suppose M is an algorithm suppose ‘n’ is the size of the input data.  Clearly, the complexity f(n) of M 
increases as n increases.  It is usually the rate of increase of f(n) that we want to examine.  This is usually 
done by comparing f(n) with some standard function such as; 
 
 Log2n,   n,  n log2n,  n2,  n3,  2n 
 
The rates of growth for these standard functions are indicated in this table. 
 

n\g(n) logn n n.logn n2 n3 2n 
5 
10 
100 

1000 

3 
4 
7 
10 

5 
10 
100 
103 

15 
40 

700 
104 

25 
100 
104 
106 

125 
103 
106 
109 

32 
103 
1030 
10300 

 
 The constants involved in the equations are not considered for the complexity comparison.  For high degree 
 of ‘n’, the constants are negligible.  
 
 Look at: Figure 6.1.3, page 333 in Data Structures using C and C++ by Langsam, Augenstein, Tenenbaum 
 
 Negative example 
 Let’s see whether   x4 ≠  O (3x3 + 5x2 – 9) or not. 
 

Let’s say, C (3x3 + 5x2  – 9) ≥ x4 is always true.  Easiest way is with limits (yes Calculus is good to know): 
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It shows that we were wrong at our assumption. 
 
Positive example 
3x3 + 5x2 – 9 = O (x3 ).  Compute: 
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 yes, it holds. 
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Order of [0, 2] 

 

 
order of [0, 100] 

 
Space analysis 
 - easier than time analysis  
 - same techniques are used 
 - done for the space to store data, does not include the space to store algorithm itself. 
 - the space function also is usually in order notation. 
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 Exchange sorts  

Bubble sort 
 

- Simplest algorithm. 
 
- Start fro m the beginning. 
- Swap if A[j] > A[j+1].  Compare a given element with each and every item that it follows. 
- Stop swapping if A[j] > A[j+1] do not hold for any element. 
 

 Consider the list: 
  25, 57, 48, 37, 12, 92, 86, 33 
  

Passes  1 2 3 4 5 6 7 8 
1 25 57 48 37 12 92 86 33 
2 25 48 37 12 57 86 33 92 
3 25 37 12 48 57 33 86 92 
4 25 12 37 48 33 57 86 92 
5 12 25 37 33 48 57 86 92 
6 12 25 33 37 48 57 86 92 

 
 In the worst case of bubble sort, the number of comparisons can go up to n2 [(n-1) * (n-1) comparisons 
 give order of n2]. 
 
Quick sort 
 One kind of divide and conquer algorithm. 
 
 General idea is; 

− select a key 
− now start selecting the remaining elements.  If the element is greater than the key, put on the right 

hand side, otherwise put on left hand side. 
− sort all of the elements on right and left hand side in the same manner. 

 
41, 35, 61, 7, 19, 99, 18, 33 

 
   a = 41  
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Partition Illustration (algorithmic) 
 25, 57, 48, 37, 12, 92, 86, 33 
 

Key 25 57 48 37 12 92 86 33 
a = 25 Downà       up 

 move ‘down’ until the greater value is found 
 25 57 48 37 12 92 86 33 
  down      ßup 
 move ‘up’ until a < k[j] i.e. ‘up’ 
 25 57 48 37 12 92 86 33 
  down   up    
 if down < up, or hasn’t crossed, exchange 
 25 12 48 37 57 92 86 33 
  Downà   up    
 25 12 48 37 57 92 86 33 
   down  ßßup    
 25 12 48 37 57 92 86 33 
  up down      
 if up and down crossed, exchange the values of k[up] ß> a 
 ( 12 ) 25 ( 48 37 57 92 86 33 ) 
  pivot 

point 
      

 Here, the left pan has only one element, so sorted.  Let’s do for right pan. 
         

a = 48 12 25 48 37 57 92 86 33 
   Downàà     up 
 12 25 48 37 57 92 86 33 
     down   ßup 
 k[up] is less than ‘a’ already, so stop and exchange ‘down’ & ‘up’ 
 12 25 48 37 33 92 86 57 
     Downà   up 
 12 25 48 37 33 92 86 57 
      down  ßßup 
 12 25 48 37 33 92 86 57 
     up down   
 crossed, so exchange ‘a’ and k[up] 
 12 25 ( 33 37 ) 48 ( 92 86 57 ) 
     pivot    

a = 33 12 25 33 37     
   Downà up     
   33 37     
    ßup     
 crossed, so exchange ‘a’ and k[up] 
   ( ) 33 ( 37)      
  both pans are already sorted 

a = 92 12 25 33 37 48 92 86 57 
      Down

àà 
 up 

 12 25 33 37 48 92 86 57 
        up  down 
  exchange ‘a’ and k[up] 

a = 57 12 25 33 37 48 ( 57 86 ) 92 ( ) 
      Down

à 
Upß  

 12 25 33 37 48 57 86 92 
      up down  
  exchange ‘a’ and k[up] 
 12 25 33 37 48 ( ) 57 (86) 92 
 NULL and one element in left and right pan. Therefore sorted. 
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 General Procedure:  Qsort(k, LB, UB) 

1. flag ß true 
2. [perform sort] 

if LB <= UB then    (down < up) 
 i ß LB 
 j ß UB + 1 
 key ß k[LB] 
 
 repeat while(flag) 
  i ß i + 1 
  repeat while k[i] < key 
   i ß i + 1 
 
  repeat while k[ j] > key 
   j ß j – 1 
  if(i < j) then 
   k[i] ß> k[ j] 
  else 
   flag ß false 
 k[LB] ß> k[ j] 
 call Qsort(k, LB, j – 1) 
 call Qsort(k, j + 1, UB) 

3. Finish. Return 
 
 Quick sort is one of the efficient sorting algorithms .  The sorting time is in the order of (n . logn). 
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 Selection and tree sorts  

In selection sort, a key is selected and then put on the proper place. 
 
Straight selection sort 
General algorithm: 

1. Repeat through step -5 a total of (n-1) times. 
2. Record the portion of the array already sorted. 
3. Repeat step 4 for the elements in the unsorted portion of the list. 
4. Record location of smallest element in unsorted portion list. 
5. Exchange first element in unsorted list with smallest element. 

 
Tracing 

 Unsorted Pass numbers (i) – sorted 
i k[j] 1 2 3 4 5 6 7 8 9 
1 42 11 11 11 11 11 11 11 11 11 
2 23 23 23 23 23 23 23 23 23 23 
3 74 74 36 36 36 36 36 36 36 36 
4 11 42 42 42 42 42 42 42 42 42 
5 65 65 65 65 65 58 58 58 58 58 
6 58 58 58 58 58 65 65 65 65 65 
7 94 94 94 94 94 94 94 74 74 74 
8 36 36 74 74 74 74 74 94 87 87 
9 99 99 99 99 99 99 99 99 99 94 
10 87 87 87 87 87 87 87 87 94 99 

 
 Straight selection sort has time complexity of O(n2) as all the elements are compared with the current key. 
 
Binary tree sort 
 General idea is to create a binary search tree and access the elements either in LVR and RVL for ascending 
 and descending order. 
 
 But, in case of inbalanced tree (right skewed and left skewed), the search time goes approximately n2.  
 Therefore, to minimize the search time, AVL trees are maintained.  This will increase performance up to  
 (n . logn).  Still, BST requires some time to search and retrieve the data.  After deletion of ele ments, there 
 are some burden to maintain the BST property.  It mean, the tree is accessed 2 times.  To minimize the time 
 for retrieval, heap is created.  In heap sort, the heap creation takes time, but the retrieval takes no time. 
 
Heap sort 
 Definition: 
  A heap is defined to be a binary tree with a key in each node, such that; 
 

1. All the leaves of the tree are on two adjacent levels. 
2. Additions on the lowest level occur to the left and all levels, except possibly the lowest, 

are filled. 
3. The key in the root is at least as large as the keys in its children (if any), and the left & 

right sub-trees (if they exist) are again heaps (in case of max. heap). 
 
 Two types 
  Max heap: descending heap.  The largest element is kept at the top (as root node). 
  Min heap: ascending heap.  The smallest element is kept at the top (as root node). 
 
 Heap construction 
 Inserting new record into existing heap such that new heap is formed after performing the insertion 
 (adjustments might be needed). 
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 For deletion, the root node is deleted and nodes are adjusted again so that the resulting tree again holds the 
 heap property. 
 

 
 
 The deleted elements are stored at the last of the array. 
 
 Classwork: create heap of given data: 

42, 23, 74, 11, 65, 58, 94, 36, 99, 87 
 
 procedure: create_heap(K, n) 

1. Repeat thru step 7 for Q = 2, 3, 4, . . . , N 
2. I ß Q,  key ß K[Q]. 
3. J ß I/2 
4. Repeat thru step 6 while I > 1 & key > K[J]. 
5. K[I] ß K[J] 
6. I ß J, J ß I / 2 

if, J < 1, then J ß 1 
7. K[I] ß key 
 return 

 
procedure: heap(K, n) 
1. call create_heap(K, n) 
2. repeat thru step 10 for Q = N, N-1, . . . , 2 
3. K[1] ßà K[Q] 
4. I ß 1, key ß K[1], J ß 2 
5. If J+1 < Q 

then, if K[J+1] > K[J] 
 then J ß J + 1 

6. Repeat thru step 10 
while J<= Q-1  and  K[J] > key 

7. K[I] ß K[J] 
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8. I ß J, J ß 2 * I 
9. If J+1 < Q 

then, if K[J + 1] > K[J] 
 then J ß J + 1 
else if J > N then 
 J ß N 

10. K[1] ß key 
11. return 
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 Insertion sorts  

Here, the elements are inserted into the resulting array so that it will always forms sorted array. 
 
Simple insertio n 
 The algorithm is directly applied to the file.   
 
 Number of passes = n-1.   
 
 General procedure: 

1. Set A[0] = -α [initialize sentinel element] 
2. Repeat steps 3 to 5 for k = 2, 3, ……, N 
3. Set temp = A[k] & ptr = k-1. 
4. Repeat while, temp < A[ptr] 

i. set A[ptr + 1] = A[ptr]    i.e. move element forward 
ii. set ptr = ptr – 1. 

5. Set A[ptr+1] = temp 
- insert element in proper place 

  [End of the step-2 loop]. 
Return 

 
Tracing 
 Data: 77, 33, 44, 11, 88, 22, 66, 55 

Pass A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] 
K= 1 

(original 
data) 

-α  77 33 44 11 88 22 66 55 

k = 2 -α  33 77       
3 -α  33 44 77      
4 -α          
5 -α          
6 -α          
7 -α          

 
When k = 2, A[k] = 33, temp = 33, ptr = 1,  A[ptr] = 77 
 now, while temp < A[ptr] 
 
 A[ptr + 1] = A[2] = 77 
 ptr = 0 
 
When k = 3, A[k] = 44,  temp = 44, ptr = 2,  A[ptr] = 77 
 while temp < A[ptr] 
 
  A[ptr + 1] = A[2] = 44 
 
 ptr = 1, temp > A[ptr], 

  end.        
 
Shell sort 
 - due to Shell, D. L (1959) 
 - sometimes called diminishing increment sort (advanced insertion). 
 - the idea behind shell sort is: 
 

“For small and almost sorted files, insertion sort is very efficient.  Thus for large files to be sorted, 
sub-files are sorted as insertion sort in an increment & again sub-files are divided with diminishing 
increment.  Finally increment will be one.” 
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 Tracing with data 
 
  Original file: 25, 57, 48, 37, 12, 92, 86, 33 
   

 
   

 
 
  No. of span = no. of sub-files. 
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 Merge and radix sorts  

Merge sort 
The file is divided and sorted.  The sorted portions are again merged to get final result.  Also a divide and conquer 
algorithm. 
 

void sort(list){ 
 if (list has length greater than 1){ 
  partition the list into lowList, highList; 
  sort(lowList); 
  sort(highList); 
  Combine(lowList, highList); 
 } 
} 

 
 Sample: 42, 23, 74, 11, 65, 58, 94, 36, 99, 87  
  

 
 

 
 Merging          
  - arranging two ordered sub-tables into a table. 
 
 Consider: 
 
  K: 11 23 42 9 25 
 
 Let,  first – pointer = 11 
  second - pointer = 25 
 
 A general algorithm (procedure) mSort(K, start, finish) 

1. size ß finish – start + 1 
2. if size <= 1, return; 
3. middle ß start + (size / 2) + 1 
4. call mSort(k, start, middle) 
5. call mSort(k, middle + 1, finish) 
call simple merge (k, start, middle + 1, finish) 

 
Procedure: simple-merge(k, first, second, last) 
1. [initialize] 
 i ß first 
 j ß second 
 L ß 0 
 
2: [compare & output the smallest] 
 repeat while i<second and j<= last 
  if k[i] <= k[j] then 
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   L ß L + 1 
   temp[L] ß k[i] 
   i ß i + 1 
  else 
   L ß L + 1 
   temp[L] ß k[j] 
   j ß j + 1 
3: [copy remaining elements unprocessed in output area] 
 if i >= second then,  
  repeat while j <= last 
   L ß L + 1 
   temp[L] ß k[ j] 
   j ß j + 1 
 else, 
  repeat while i < second 
   L ß L + 1 
   temp[L] ß k[i] 
   i ß i + 1 
4. [copy elements from temporary area to original area] 
 repeat for i = 1, 2, …., L 
  k[first – 1 + i] = temp [i] 

 
Radix sort (bucket sort)       
 
 General idea is that; find the radix for each and every digit, and place in corresponding place. 
 
 Demonstration: 
 
  Input 64, 8, 216, 512, 27, 729, 0, 1, 343, 125 
  
  (number of steps = maximum number of digits.) 
 
  Buckets after first-step (put according to Least Significant digit) 

0 1 512 343 64 125 216 27 8 729 
0 1 2 3 4 5 6 7 8 9 

 
  Buckets after second-step (put according to second-least significant digit) 

8 
1 
0 

 
216 
512 

729 
27 

125 

  
 

343 

  
 

64 

   

0 1 2 3 4 5 6 7 8 9 
 
  Buckets after third step (put according to most significant digit) 

64 
27 
8 
1 
0 

 
 
 
 

125 

 
 
 
 

216 

 
 
 
 

343 

  
 
 
 

512 

  
 
 
 

729 

  

0 1 2 3 4 5 6 7 8 9 
 
  Now, to read the sorted data, just start reading elements upwards from array[0] to array[9]. 
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 Multi-linked list implementation 
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 Comparisons of sorting algorithms   

 
While comparing the sorting algorithms, we always look for the time complexity.  Due to high availability and 
economy of the memory chip, most f the time, only time comp lexity is addressed.   
 
Before comparing the sorting algorithm, it’s necessary to calculate the order of the time complexity of a given 
algorithm.  We have already seen how time complexity of a given algorithm is calculated?   
 
Have a look at Complexity of algorithms, page 2. 
 
Algorithm Analysis (case study) 
 
 Algorithm to find maximum number. 
 
 Algorithm – 1 
 
  For 1 variable = no comparison. 
  For 2 variable = 1 comparison. 
  For 3 variable = 3 comparison. 

 
 
  For 4 variable = 7 comparison 
  

 
  
 Analysis 
 
  No. of variables   Comparison 
   1   0  20 – 1 
   2   1  21 – 1 
   3   3  22 – 1 
   4   7  23 – 1 
   .   .  
   .   . 
   n   2n-1 -1 
 
  For large n, runtime efficiency is proportionally equal to 2n-1. 
    Or, run time efficiency ~ 2n. 
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 Algorithm – 2 
 

 
  Analysis  
   
  Number of Variables   Comparison 
   1    0 
   2    1 
   3    2 
   .    . 
   n    n-1 
 
  For n sufficiently large, runtime efficiency is directly proportional to n. 
  
 Here,  
  Algorithm – 1 has time efficiency in the order of 2n   O(2n) 
  Algorithm – 2 has time efficiency in the order of n  O(n) 
  
Further, let’s again look at time complexity of binary search . 
 
1.  In binary search, each comparison in the binary search reduces the number of possible candidates by a 
 factor of 2.  Thus the maximum number of comparisons is log2n.  How? 

 
Let’s say, we require f(n) comparisons to locate a given item. 
 
Then, the number of nodes in the tree can be related with the comparisons as; 
 

2f(n)  >  n 
or 

f(n) = [log2n] + 1 
 Thus, searching time is order of O(log2n). 
 
 Example: 
 
  Suppose a file contains 15 items , then we need; 
 

f(n) = [log2n] + 1 
f(n) = log2 15 + 1 

 
or, simply 
24 > 15 

Therefore, f(n) = 4 + 1 = 5.  i .e. in worst case, there will be 5 comparisons at max. 
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 Example: 
  Suppose a file contains 1,000,000 items. 
 
  And, we know  210 = 1024 
  Hence,   220 > 10002 
          = 1,000,000  
  i.e.   f(n) = 20 
 
 Here, we saw that, using binary search algorithm, one requires only about 20 comparisons to find the 
 location of an item in a data array with 1,000,000 elements.  But one should remember that this algorithm 
 requires two conditions. 
 
 i. The list must be sorted. 
 ii. One must have direct access to the middle element in any sublist. 
 
2.  You can use inary search in conjunction with the indexed sequential search organization method. 
 
3. Not: binary search on indices can be used only if the index table is sorted as an array.  Particularly useless 

in situations where there are many insertions or deletions, so that an array structure is inappropriate. 
   
Sorting time summary 
 

The appropriate number of comparisons and the complexity of the various sorting algorithms are 
summarized in the following table. 
 
 

Algorithm Worse case Average case 

Bubble sort 
2

)1(* −nn
 = O(n2) 

2
)1(* −nn

 = O(n2) 

Quick sort 
2

)3(* +nn
 = O(n2) 1.4 n logn = O(n.logn) 

Insertion sort  
2

)1(* −nn
 = O(n2) 

4
)1(* −nn

 = O(n2) 

Selection sort 
2

)1(* −nn
 = O(n2) 

2
)1(* −nn

 = O(n2) 

Merge sort  n.logn = O(n.logn) n.logn = O(n.logn) 
Heap sort n.logn = O(n.logn) n.logn = O(n.logn) 

 
Selecting a sort 
 

Algorithm Comments 
Bubble sort Good for small n (n < 10) 
Quick sort Excellent for virtual memory environment 
Insertion sort  Good for almost sorted data 
Selection sort  Good for partially sorted data and small ‘n’ 
Merge sort  Good for external file sorting 
Heap sort As efficient as quick sort in the average case and far superior to quick sort in the worst case 

 


